
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Enzyme-functionalized electrochemical immunosensor based on electrochemically reduced graphene oxide and polyvinyl alcohol-Polydimethylsiloxane for detection of Salmonella pullorum & Salmonella gallinarum

Dan Wang, Wenchao Dou, Yan Chen, Guangying Zhao*

Supplementary material

Fig.S1 FTIR spectrum of PVA (a) and PVA/PDMS (b).

Spectroscopic characterization of the graft copolymer composition PVA-PDMS by FTIR analysis. FTIR reveals that chemically synthesized PVA-PDMS is well adhesion with each other which recorded in dry KBr pellet in the range of 400–4000 cm⁻¹,

As shown in Fig. 1(a) that the characteristic C–H stretching vibrations at 1400.14 cm⁻¹, this is characteristic absorbing peaks of the PVA. In Fig. 2(b), FTIR of PVA-PDMS, the absorption peak appeared at 1261.28 cm⁻¹ and 793cm⁻¹, these were Si-O-

Si stretching vibration and Si-CH₃ stretching vibration. C=O stretching vibrations reflected at 1639.28cm⁻¹. -OH stretching vibrations at 3322-3471 cm⁻¹, in part because of –OH of PVA, the other part is that –OH of H₂O. Stretching vibrations at 2086.70 cm⁻¹ possibly because of CO₂ impurity in the air mixed while PVA-PDMS preparation. This means that the PVA and PDMS cross-links together and forming a layer of polymer film.