Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

### Reversible mechanochromism in dipyridylamine-substituted unsymmetrical

benzothiadiazoles

Prabhat Gautam, Ramesh Maragani, Shaikh M. Mobin and Rajneesh Misra\*

Department of Chemistry, Indian Institute of Technology Indore, Indore- 452017, India.

rajneeshmisra@iiti.ac.in

| Table of Contents                                                                             |
|-----------------------------------------------------------------------------------------------|
| I. Experimental details S2                                                                    |
| II. Copies of <sup>1</sup> H NMR, <sup>13</sup> C NMR spectra and HRMS of the New CompoundsS5 |
| III. TGA of BTD 2 and 3S14                                                                    |
|                                                                                               |

IV. UV/vis and Emission Data of BTD 2 and 3·····S15

| VI | DFT | Calculations | for 2 and | 3 | <br> |     |
|----|-----|--------------|-----------|---|------|-----|
|    |     | Calculations | IVI 2 anu | 5 |      | 040 |

**I. Experimental Section:** Chemicals were used as received unless otherwise indicated. All oxygen or moisture sensitive reactions were performed under nitrogen/argon atmosphere. <sup>1</sup>H NMR (400 MHz), and <sup>13</sup>C NMR (100MHz) spectra were recorded on on the Bruker Avance (III) 400 MHz instrument by using CDCl<sub>3</sub>. Chemical shifts for <sup>1</sup>H NMR spectra are reported in delta ( $\delta$ ) units, expressed in parts per million (ppm) downfield from tetramethylsilane using residual protonated solvent as an internal standard {CDCl<sub>3</sub>, 7.26 ppm}. Chemical shifts for <sup>13</sup>C NMR spectra are reported in delta ( $\delta$ ) units, expressed in parts per million (ppm) downfield from tetramethylsilane using the solvent as internal standard {CDCl<sub>3</sub>, 77.0 ppm}. The <sup>1</sup>H NMR splitting patterns have been described as "s, singlet; d, doublet; t, triplet and m, multiplet". Thermogravimetric analyses were performed on the Metler Toledo Thermal Analysis system. UV-visible absorption spectra were recorded on a Carry-100 Bio UV-visible Spectrophotometer. Emission spectra were taken in a fluoromax-4p fluorimeter from HoribaYovin (model: FM-100). The excitation and emission slits were 2/2 nm for the emission measurements. All of the measurements were done at 25°C. The density functional theory (DFT) calculation were carried out at the B3LYP/6-31G\*\* level for C, N, S, H in the Gaussian 09 program. HRMS was recorded on Brucker-Daltonics, micrOTOF-Q II mass spectrometer. The XRD measurements were performed using Rigaku SmartLab, Automated Multipurpose Xray diffractometer. The X-rays were produced using a sealed tube and the wavelength of the X-ray was 0.154 nm (Cu K-alpha).

#### **Reaction Scheme**



#### Preparation of benzothiazole 1.

To a stirred solution of the 4-ethynylbiphenyl (1 mmol), and dibromo-BTD **1** (1 mmol) in THF, and TEA (1:1, v/v) were added [PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>] (10 mg, 0.014 mmol) and CuI (2 mg, 0.01 mmol) under an argon flow at room temperature. The reaction mixture was stirred for 12 h at 60 °C, and then cooled to room temperature. The solvent was then evaporated under reduced pressure, and the mixture was purified by SiO<sub>2</sub> chromatography with DCM/hexane (1:3, v/v), followed by recrystallization in DCM:hexane (1:3) to obtain **1**. Pale yellowish solid (203 mg, Yield: 52 %): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 7.85 (d, 1H, J = 7.5 Hz), 7.75–7.72 (m, 2H), 7.68 (d, 1H, 7.5 Hz), 7.65–7.62 (m, 4H), 7.49–7.44 (m, 2H), 7.40–7.36 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 154.1, 153.1, 141.8, 140.1, 132.7, 132.4, 132.0, 128.9, 127.8, 127.1, 127.0, 121.2, 116.7, 114.6, 96.8, 85.2; HRMS (ESI-TOF) *m*/*z* calcd for C<sub>20</sub>H<sub>11</sub>BrN<sub>2</sub>S + Na: 412.9719 [M + Na]<sup>+</sup>, found 412.9683 [M+ Na]<sup>+</sup>.

#### Preparation of benzothiadiazole 2.

To a stirred solution of the 3-ethynylpyridine (1 mmol), **1** (1 mmol) in THF, and TEA (1:1, v/v) were added [PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>] (10 mg, 0.014 mmol) and CuI (2 mg, 0.01 mmol) under an argon flow at room temperature. The reaction mixture was stirred for 24 h at 60 °C, and then cooled to room temperature. The solvent was then evaporated under reduced pressure, and the mixture was purified by SiO<sub>2</sub> chromatography with DCM/hexane (2:2, v/v), to obtain **2.** Yellowish green solid ( 322 mg, Yield: 78 %); <sup>1</sup>H NMR (400 MHz, (CDCl<sub>3</sub>,  $\delta$  in ppm): 8.91 (s, 1H), 8.63 (m, 1H), 7.98–7.95 (m, 1H), 7.86–7.82 (m, 2H), 7.77–7.74 (m, 2H), 7.67–7.63 (m, 4H), 7.49–7.45 (m, 2H), 7.41–7.34 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 154.3, 154.2, 152..5, 149.2, 141.9, 140.1, 138.7, 132.8, 132.4, 132.2, 128.9, 127.8, 127.1, 127.0, 123.1, 121.2, 119.8, 117.9,

116.2, 97.9, 93.6, 88.4, 85.9, HRMS (ESI-TOF) m/z calcd for  $C_{27}H_{15}N_3S + H$ : 414.1059 [M + H]<sup>+</sup>, found 414.1058 [M + H]<sup>+</sup>.

#### Preparation of benzothiadiazole 3.

2,2'-Dipyridylamine (4.0 mmol), **1** (3.0 mmol), anhydrous potassium carbonate (12.0 mmol), cupric sulfate (0.63 mmol), and 1,2-dichlorobenzene (10 mL) were added to a round bottom flask, degassed, and flushed with N<sub>2</sub>. The reaction mixture was heated at 180 °C for 48 h, and then cooled to room temperature. Dichloromethane and water were added. The organic phase was washed with water and then dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent, the residue was purified by SiO<sub>2</sub> column chromatography, using DCM: Ethylacetate (9 : 1) mixture as eluent to afford **3**. Yellow solid (313 mg, Yield: 65 %); <sup>1</sup>H NMR (400 MHz, (CDCl<sub>3</sub>,  $\delta$  in ppm): 8.30-8.28 (m, 2H), 7.81 (d, 1H, *J* = 7.8 Hz), 7.75-7.72 (m, 2H), 7.66-7.61 (m, 6H), 7.49-7.45 (m, 2H), 7.41-7.35 (m, 2H), 7.14-7.12 (m, 2H), 7.03-6.99 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $\delta$  in ppm): 157.5, 156.1, 151.5, 148.6, 141.4, 140.3, 137.8, 137.6, 133.3, 132.3, 128.9, 127.7, 127.04, 127.0, 125.6, 121.7, 119.1, 117.2, 114.2, 95.5, 86.1; HRMS (ESI-TOF) *m/z* calcd for C<sub>30</sub>H<sub>19</sub>N<sub>5</sub>S + H: 482.143 [M + H]<sup>+</sup>, found 482.143 [M + H]<sup>+</sup>.

II. Copies of <sup>1</sup>H NMR, <sup>13</sup>C NMR spectra and HRMS of the New Compounds



Fig. S1<sup>1</sup>H NMR Spectra of 1.



**Fig. S2** <sup>13</sup>C NMR Spectra of **1**.



Fig. S3 <sup>1</sup>H NMR Spectra of 2.



**Fig. S4** <sup>13</sup>C NMR Spectra of **2**.



Fig. S5 <sup>1</sup>H NMR Spectra of 3.



**Fig. S6**<sup>13</sup>C NMR Spectra of **3**.





Fig. S7 HRMS of 1.











Fig. S9 HRMS of 3

## III. TGA of BTD 2 and 3



Fig. S10 TGA plots of 2 and 3 at a heating rate of 10 °C min<sup>-1</sup>, under nitrogen atmosphere.

# IV. UV/vis and Emission Data of BTD 2 and 3



Fig. S11 UV/vis absorption spectra of 2.



Fig. S12 UV/vis absorption spectra 3.



Fig. S13 Emission spectra of 2.



Fig. S14 Emission spectra of 3.



Fig. S15 Normalized absorbance and photograph of the solid sample of BTD 2 as prepared.



Fig. S16 Normalized absorbance and photograph of the sample of BTD 3 as prepared.



Fig. S17 Normalized absorbance and photograph of the sample of BTD 3 after grinding.



Fig. S18 Normalized emission and photograph of the solid sample of BTD 2 as prepared.

| BTD | Photophysical data <sup>a</sup>                         |                                                               |                         |                       |                              |                                  |                                            |                                        |                                           |                   |                       |
|-----|---------------------------------------------------------|---------------------------------------------------------------|-------------------------|-----------------------|------------------------------|----------------------------------|--------------------------------------------|----------------------------------------|-------------------------------------------|-------------------|-----------------------|
|     | In dichloromethane solution <sup>a</sup> In solid state |                                                               |                         |                       |                              |                                  |                                            |                                        | Optical Gap                               | HOMO-LUMO         |                       |
|     | λ <sub>abs</sub><br>(nm)                                | $\boldsymbol{\varepsilon} (\mathbf{M}^{-1} \mathbf{cm}^{-1})$ | λ <sub>em</sub><br>(nm) | Stoke's<br>shift (nm) | $\mathbf{\Phi}_{\mathrm{F}}$ | $\lambda_{abs}$ (nm) as prepared | λ <sub>abs</sub> (nm)<br>after<br>grinding | λ <sub>em</sub><br>(nm) as<br>prepared | λ <sub>em</sub><br>(nm) after<br>grinding | (eV) <sup>b</sup> | Gap (eV) <sup>c</sup> |
| 2   | 312<br>417                                              | 50437<br>40382                                                | 513                     | 96                    | 0.47                         | 443                              | -                                          | 538                                    | 538                                       | 2.68              | 2.79                  |
| 3   | 319<br>448                                              | 90273<br>52841                                                | 578                     | 130                   | 0.14                         | 481                              | 498                                        | 556                                    | 582                                       | 2.47              | 2.69                  |

Table S1. Photophysical data of BTD 2 and 3

<sup>a</sup> measured in DCM; Stoke's shift calculated from the difference of  $\lambda_{max}$  abs and  $\lambda_{max}$ em.  $\Phi_F$  calculated with Quinine sulfate ( $\Phi = 0.55$ ) in 0.1M H<sub>2</sub>SO<sub>4</sub> as standard; <sup>b</sup>Optical gap determined from  $\lambda_{onset}$ ; <sup>c</sup> HOMO–LUMO gap: calculations performed at the B3LYP/6-31G\*\* level.



Fig. S19 BTD 3 as prepared (Ap) and repeated switching of the solid-state fluorescence by repeated grinding (G) and heating (H) cycles.



Fig. S20 BTD 3 as prepared (Ap) and repeated switching of the solid-state fluorescence by repeated grinding (G) and fuming (V) cycles

#### I. Crystallographic Data

Single crystal X-ray structural studies of benzothiadiazole **3** was collected at 150(2) K using graphitemonochromated Mo K $\alpha$  radiation ( $\lambda_{\alpha} = 0.71073$  Å). The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phi-omega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on  $F^2$ . The positions of all the atoms were obtained by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions, and refined with isotropic temperature factors, generally  $1.2U_{eq}$  of their parent atoms. The crystal, and refinement data are summarized in Table 1. The CCDC number **1020099** contains the supplementary crystallographic data for BTD **3**. These data can be obtained free of charge via www.ccdc.cam.ac.uk (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Table S2. Crystal data and structure refinement for BTD 3.

| BTD                            | 3                     |
|--------------------------------|-----------------------|
| Identification code            | rm108                 |
| Empirical formula              | $C_{30} H_{19} N_5 S$ |
| Formula weight                 | 481.56                |
| Temperature                    | 273(2) K              |
| Wavelength(A)                  | 1.5418 A              |
| Crystal system, space<br>group | Monoclinic, P 21/c    |
| a/ (Å)                         | 20.8735(5)            |
| b/ (Å)                         | 11.8292(3)            |
| c/ (Å)                         | 9.8383(3)             |
| α/(°)                          | 90                    |
| <b>β</b> / (°)                 | 101.978(3)            |
| γ⁄ (°)                         | 90                    |

| Volume                                             | 2376.35(11) Å <sup>3</sup>                  |
|----------------------------------------------------|---------------------------------------------|
| Z, Calculated density (mg<br>m <sup>-3</sup> )     | 4, 1.346                                    |
| Absorption coefficient<br>/(mm <sup>-1</sup> )     | 1.438                                       |
| F(000)                                             | 1000                                        |
| Crystal size                                       | 0.22 x 0.18 x 0.14 mm                       |
| θ range for data collection/(°)                    | 4.32 to 71.98                               |
| Limiting indices                                   | -25<=h<=24, -14<=k<=10,<br>-12<=l<=11       |
| Reflections collected /<br>unique                  | 15657 / 4584 [R(int) = 0.0256]              |
| Completeness to theta                              | $\theta = 25.00; 99.5 \%$                   |
| Absorption correction                              | Semi-empirical from equivalents             |
| Max. and min.<br>transmission                      | 0.8240 and 0.7426                           |
| Refinement method                                  | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints /<br>parameters                  | 4584 / 0 / 400                              |
| Goodness-of-fit on F <sup>2</sup>                  | 1.057                                       |
| Final R indices<br>[I>2sigma(I)]                   | R1 = 0.0452, wR2 = 0.1274                   |
| R indices (all data)                               | R1 = 0.0529, wR2 = 0.1393                   |
| Largest diff. peak and hole<br>(eÅ <sup>-3</sup> ) | 0.312 and -0.397                            |



**Fig. 21** ORTEP view of **3** and the atom-labelling scheme. Thermal ellipsoids are plotted at the 50 % level.



Fig. S22 Crystal structure of 3 side view (above) and top view (below).

| Bor        | nd lengths [Å] | Bond an          | gles [°]   |  |  |  |  |  |
|------------|----------------|------------------|------------|--|--|--|--|--|
| For 3      |                |                  |            |  |  |  |  |  |
| S(1)-N(2)  | 1.6035(18)     | N(2)-S(1)-N(1)   | 101.64(8)  |  |  |  |  |  |
| S(1)-N(1)  | 1.6086(17)     | C(1)-N(1)-S(1)   | 105.76(12) |  |  |  |  |  |
| N(1)-C(1)  | 1.341(2)       | C(6)-N(2)-S(1)   | 106.07(12) |  |  |  |  |  |
| N(2)-C(6)  | 1.339(2)       | N(1)-C(1)-C(2)   | 126.49(15) |  |  |  |  |  |
| C(2)-N(5)  | 1.416(2)       | N(1)-C(1)-C(6)   | 113.32(15) |  |  |  |  |  |
| C(21)-N(5) | 1.429(2)       | C(3)-C(2)-N(5)   | 121.05(16) |  |  |  |  |  |
| C(21)-N(3) | 1.320(2)       | N(5)-C(2)-C(1)   | 121.69(15) |  |  |  |  |  |
| C(25)-N(3) | 1.347(3)       | N(2)-C(6)-C(5)   | 125.63(15) |  |  |  |  |  |
| C(26)-N(4) | 1.336(2)       | N(2)-C(6)-C(1)   | 113.21(15) |  |  |  |  |  |
| C(26)-N(5) | 1.394(2)       | N(3)-C(21)-C(22) | 123.75(17) |  |  |  |  |  |
| N(4)-C(30) | 1.350(3)       | N(3)-C(21)-N(5)  | 115.47(15) |  |  |  |  |  |
|            |                | C(22)-C(21)-N(5) | 120.77(17) |  |  |  |  |  |
|            |                | N(3)-C(25)-C(24) | 123.5(2)   |  |  |  |  |  |
|            |                | N(3)-C(25)-H(25) | 118.3      |  |  |  |  |  |
|            |                | N(4)-C(26)-C(27) | 123.23(16) |  |  |  |  |  |

Table S3. Selected bond length and bond angle of BTD 3



Fig. S23 Powder-XRD patterns of BTD 3 after fuming with DCM vapor.

# **DFT** Calculations for 2 and 3.<sup>1</sup>

## BTD 2

|          |        | Standard | orientation:         |                       |                      |
|----------|--------|----------|----------------------|-----------------------|----------------------|
| Center   | Atomic | Atomic   | Coord                | dinates (Ang          | stroms)              |
| Number   | Number | Туре     | X                    | Y                     | Z                    |
| 1        | 16     | 0        | 2.186558             | 3.018415              | -0.198171            |
| 2        | 7      | 0        | 0.906723             | 1.989942              | -0.136800            |
| 3        | 7      | 0        | 3.426868             | 1.942778              | -0.128510            |
| 4        | б      | 0        | 1.418570             | 0.758746              | -0.059130            |
| 5        | б      | 0        | 2.868360             | 0.731796              | -0.054262            |
| 6        | б      | 0        | 3.579870             | -0.518633             | 0.025101             |
| 7        | б      | 0        | 2.804238             | -1.670056             | 0.094133             |
| 8        | 1      | 0        | 3.306442             | -2.629892             | 0.154940             |
| 9        | б      | 0        | 1.390007             | -1.644076             | 0.089265             |
| 10       | 1      | 0        | 0.851816             | -2.584296             | 0.146512             |
| 11       | б      | 0        | 0.658325             | -0.464011             | 0.015181             |
| 12       | б      | 0        | -0.754436            | -0.444004             | 0.012766             |
| 13       | б      | 0        | -1.972005            | -0.423371             | 0.011959             |
| 14       | б      | 0        | -3.391561            | -0.375649             | 0.011462             |
| 15       | б      | 0        | -4.066580            | 0.860778              | -0.058713            |
| 16       | 6      | 0        | -4.159169            | -1.556195             | 0.082093             |
| 17       | 6      | 0        | -5.454303            | 0.907395              | -0.057184            |
| 18       | 1      | 0        | -3.486390            | 1.775444              | -0.123716            |
| 19       | б      | 0        | -5.546623            | -1.497354             | 0.083790             |
| 20       | 1      | 0        | -3.653251            | -2.514191             | 0.146347             |
| 21       | 6      | 0        | -6.226201            | -0.267129             | 0.014722             |
| 22       | 1      | 0        | -5.952489            | 1.868516              | -0.139390            |
| 23       | 1      | 0        | -6.116502            | -2.417668             | 0.167514             |
| 24       | 6      | 0        | -7.708329            | -0.209768             | 0.019353             |
| 25       | 6      | 0        | -8.388358            | 0.824073              | 0.686938             |
| 26       | 6      | 0        | -8.472080            | -1.187192             | -0.642431            |
| 27       | 6      | 0        | -9.781119            | 0.878340              | 0.692556             |
| 28       | l      | 0        | -7.820103            | 1.574510              | 1.228429             |
| 29       | 6      | 0        | -9.864900            | -1.132855             | -0.636623            |
| 30       |        | 0        | -/.968561            | -1.9/9226             | -1.188/2/            |
| 31       | 6      | 0        | -10.525938           | -0.099903             | 0.030930             |
| 32       | 1      | 0        | -10.285508           | 1.681508              | 1.222327             |
| 33       | 1      | 0        | -10.434632           | -1.893942             | -1.1622/5            |
| 34       |        | 0        | -11.611181           | -0.05/583             | 0.035305             |
| 35       | 6      | 0        | 4.993580             | -0.553/64             | 0.031770             |
| 30       | 6      | 0        | 6.210318             | -0.583682             | 0.038124             |
| 37       | 6      | 0        | 7.630094             | -0.58//43             | 0.043909             |
| 38       | 6      | U        | Ø.35⊥629<br>0.374122 | 0.024/94              | -0.030181            |
| 39       | 6<br>7 | U        | 0.3/4133             | -1.//9848             | 0.122682             |
| 4U<br>11 | /      | U        | 7.00192U             | U.098329<br>1 564063  | -0.02942/            |
| 41<br>40 | ⊥<br>¢ | U        | /.8Ub34b             | 1.304Ub3              | -0.092189            |
| 4Z<br>10 | 0      | U        | У./04194<br>7 060617 | -1./U044/<br>0 70/17/ | U.123020<br>0 101/50 |
| 43<br>11 | ⊥<br>6 | 0        | 10 260275            | -2.1341/4             | 0.101439             |
| 44       | U      | U        | TO.2002/2            | -0.430040             | 0.040334             |

| 46 | 1 | 0 | 11.453081 | -0.361763 | 0.045148 |
|----|---|---|-----------|-----------|----------|
| 45 | 1 | 0 | 10.368373 | -2.604888 | 0.183224 |

Total Energy (HF) = -1600.2309089 Hartree

# BTD 3

#### Standard orientation:

| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coord<br>X | dinates (Ang<br>Y | stroms)<br>Z |
|------------------|------------------|----------------|------------|-------------------|--------------|
|                  |                  |                |            |                   |              |
| 1                | 16               | 0              | -1.743098  | -2.197647         | 2.184761     |
| 2                | 7                | 0              | -0.461369  | -1.485540         | 1.443324     |
| 3                | 7                | 0              | -2.981151  | -1.449663         | 1.408020     |
| 4                | б                | 0              | -0.970461  | -0.627776         | 0.555183     |
| 5                | 6                | 0              | -2.422219  | -0.607967         | 0.533900     |
| б                | б                | 0              | -3.120828  | 0.266205          | -0.363311    |
| 7                | 6                | 0              | -2.357249  | 1.072450          | -1.178333    |
| 8                | 1                | 0              | -2.863029  | 1.748969          | -1.859705    |
| 9                | б                | 0              | -0.938337  | 1.064813          | -1.152129    |
| 10               | 1                | 0              | -0.401861  | 1.728977          | -1.821418    |
| 11               | 6                | 0              | -0.208750  | 0.235068          | -0.312741    |
| 12               | б                | 0              | 1.206123   | 0.225377          | -0.293309    |
| 13               | 6                | 0              | 2.423193   | 0.217360          | -0.276809    |
| 14               | б                | 0              | 3.843732   | 0.195303          | -0.241910    |
| 15               | 6                | 0              | 4.526693   | -0.656245         | 0.650841     |
| 16               | б                | 0              | 4.604629   | 1.021052          | -1.094401    |
| 17               | б                | 0              | 5.914912   | -0.676161         | 0.684736     |
| 18               | 1                | 0              | 3.952369   | -1.303461         | 1.305646     |
| 19               | б                | 0              | 5.992599   | 0.992984          | -1.051859    |
| 20               | 1                | 0              | 4.093111   | 1.689157          | -1.779880    |
| 21               | б                | 0              | 6.679789   | 0.145890          | -0.163337    |
| 22               | 1                | 0              | 6.418704   | -1.359372         | 1.361787     |
| 23               | 1                | 0              | 6.556745   | 1.657748          | -1.698962    |
| 24               | б                | 0              | 8.162335   | 0.120122          | -0.121837    |
| 25               | 6                | 0              | 8.848204   | -0.038165         | 1.095232     |
| 26               | 6                | 0              | 8.920956   | 0.253171          | -1.298047    |
| 27               | 6                | 0              | 10.241326  | -0.062650         | 1.134524     |
| 28               | 1                | 0              | 8.283888   | -0.115251         | 2.019860     |
| 29               | 6                | 0              | 10.314108  | 0.228823          | -1.258692    |
| 30               | 1                | 0              | 8.412698   | 0.348833          | -2.253000    |
| 31               | б                | 0              | 10.980950  | 0.070786          | -0.042201    |
| 32               | 1                | 0              | 10.750064  | -0.177368         | 2.087545     |
| 33               | 1                | 0              | 10.879563  | 0.324537          | -2.181374    |
| 34               | 1                | 0              | 12.066448  | 0.051739          | -0.011495    |
| 35               | 7                | 0              | -4.542659  | 0.313511          | -0.384666    |
| 36               | б                | 0              | -5.169916  | 1.513628          | 0.045117     |
| 37               | 6                | 0              | -6.430309  | 1.907856          | -0.439069    |
| 38               | 6                | 0              | -6.950606  | 3.116986          | 0.001727     |

| 39 | 1 | 0 | -6.979634 | 1.280238  | -1.126850 |
|----|---|---|-----------|-----------|-----------|
| 40 | б | 0 | -4.969310 | 3.429570  | 1.292475  |
| 41 | б | 0 | -6.213408 | 3.905512  | 0.890004  |
| 42 | 1 | 0 | -7.922167 | 3.446969  | -0.355162 |
| 43 | 1 | 0 | -4.350625 | 4.005752  | 1.978539  |
| 44 | 1 | 0 | -6.588796 | 4.856102  | 1.253827  |
| 45 | б | 0 | -5.260349 | -0.863682 | -0.688515 |
| 46 | б | 0 | -4.675282 | -1.853067 | -1.503465 |
| 47 | б | 0 | -7.181113 | -2.097159 | -0.463281 |
| 48 | б | 0 | -5.399858 | -3.008305 | -1.761137 |
| 49 | 1 | 0 | -3.686817 | -1.708362 | -1.922993 |
| 50 | 6 | 0 | -6.685089 | -3.147931 | -1.230202 |
| 51 | 1 | 0 | -8.181944 | -2.148963 | -0.037434 |
| 52 | 1 | 0 | -4.969521 | -3.788138 | -2.383064 |
| 53 | 1 | 0 | -7.283705 | -4.034097 | -1.411308 |
| 54 | 7 | 0 | -6.493535 | -0.983581 | -0.187489 |
| 55 | 7 | 0 | -4.454816 | 2.261739  | 0.890005  |
|    |   |   |           |           |           |

Total Energy (HF) = -1826.5141315 Hartree

#### References

(a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009. (b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B*, 1988, **37**, 785–789. (c) Becke, A. D. *J. Chem. Phys.*, 1993, **98**, 1372–1377.