Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supplementary Material

Facile synthesis of silver and bimetallic silver-gold nanoparticles and their

applications in surface-enhanced Raman scattering

Bharat Baruah,* Meshack Kiambuthi

Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144-

5591

Corresponding author_Tel: +1 678 797 2654; fax: +1 770 423 6744.

E-mail address: bbaruah@kennesaw.edu

Figure S1. UV-visible spectra of colloidal solutions: (a) AgNP-CTAB (black line), and (b) AgNP-CTAB-NA (red line). Inset shows the corresponding digital photographs of these colloids

Figure S2. UV-Visible spectra of (a) aqueous solution of crystal violet (black line) at 250 nM, (b) supernatant of AgNP@Au-CTAB-NA after centrifugation containing 250 nM crystal violet (red line) and (c) supernatant of AgNP-CTAB-NA after centrifugation containing 250 nM crystal violet (blue line). This supernatant also contains un-precipitated AgNP-CTAB-NA evident from signal at ~403 nm. Inset shows the corresponding digital photographs of these colloids.

Figure S3. Molecular structure of crystal violet (CV).

Figure S4. (A) This cartoon represents adsorption of CV molecules into the CTAB bilayer of AgNP@Au-CTAB-NA colloids due to hydrophobic forces. (B) UV-visible spectra of (a) aqueous solution of crystal violet (black line) at 250 nM, (b) subtraction spectrum between AgNP-CTAB-NA with 0.0 nm CV and AgNP-CTAB-NA with 250 nm CV (red line), and (c) subtraction spectrum between AgNP@Au-CTAB-NA with 0.0 nm CV and AgNP@Au-CTAB-NA with 250 nm CV (blue line).