**Electronic Supporting Information** 

## Gels, Xerogels and Films of Polynuclear Iron(II)–Aminotriazole Spin-Crossover Polymeric Complexes<sup>†</sup>

Antoni Sánchez-Ferrer<sup>‡</sup>*a*, Irene Bräunlich<sup>‡</sup>*b*, Janne Ruokolainen<sup>*c*</sup>, Matthias Bauer<sup>*d*</sup>, Rahel Schepper<sup>*d*</sup>, Paul Smith<sup>*b*</sup>, Walter Caseri<sup>\*</sup>*b* and Raffaele Mezzenga<sup>\*</sup>*a*</sup>

<sup>a</sup> Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland. Fax: +41 44 632 16 03; Tel: +41 44 632 91 40; E-mail: <u>raffaele.mezzenga@hest.ethz.ch</u>

<sup>b</sup> Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland. Fax: +41 44 632 11 78; Tel: +41 44 632 22 18; Email: <u>walter.caseri@mat.ethz.ch</u>

<sup>c</sup> Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 00076 Aalto, Finland.

<sup>d</sup> Fachbereich Chemie, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.

‡ The first two authors contributed equally to this study.



**Figure ESI-1:** Differential scanning calorimetry thermograms of  $[Fe(NH_2trz)_3](2ns)_2$  during 4 heating and cooling cycles (from top to bottom) at heating and cooling rates of 10 °C·min<sup>-1</sup>.



**Figure ESI-2:** WAXS 1D scattering profile for gels of *type B* at different iron concentration ( $c_{\text{Fe}}$  between 0.0046 M and 0.0741 M ) and at constant stoichiometric ratio (NH<sub>2</sub>trz/Fe<sup>2+</sup> 9:1) by adding toluene after 30 min of sample preparation. The peaks show a columnar hexagonal packing of the rigid rods with a lattice parameter of a = 2.00 nm and correlation length of  $\xi = 25$  nm. Inset is the SAXS 1D scattering profile for the gels of *type B* with slopes close to -4 for the well-from gels ( $c_{\text{Fe}} \ge 0.0185$ M).



**Figure ESI-3:** WAXS 1D scattering profile for the gels of *type B* different stoichiometric ratio (NH<sub>2</sub>trz/Fe<sup>2+</sup> 3:1, 6:1 and 9:1) and at constant iron concentration ( $c_{Fe} = 0.0185$  M) and by adding toluene after 2 min of sample preparation. The peaks show a columnar hexagonal packing of the rigid rods with a lattice parameter of a = 2.00 nm and correlation length of  $\xi = 29$  nm. Inset is the SAXS 1D scattering profile for the gels *type B* with slopes close to -4.



**Figure ESI-4:** Polarized optical microscopy (POM) images taken with crossed polarizers of gels of *type B* at  $c_{\text{Fe}} = 0.0185$  M and NH<sub>2</sub>trz/Fe<sup>2+</sup> 3:1, 6:1 and 9:1, and at different addition time of toluene after sample preparation.



**Figure ESI-5:** Differential scanning calorimetry thermograms of the film during 3 heating and cooling cycles (from top to bottom) at heating and cooling rates of 10  $^{\circ}$ C·min<sup>-1</sup>.



**Figure ESI-6:** Thermogravimetric analysis (TGA) of a film dried at 1-3 mbar at room temperature for 24 h (red), and after subsequent drying at 0.3 mbar at 80 °C for 8 h and 150 °C for 1 h (black). The curve of the sample dried at r.t., 1-3 mbar (red curve) shows a maximum mass loss around 150 °C which corresponds to the loss of residual DMF. Indeed, the solvent could be completely removed by drying the film at elevated temperature and reduced pressure (150 °C, 0.3 mbar), as shown in the corresponding TGA curve (black curve), in which the film does not show a significant loss of weight up to ca 250 °C.