SUPPORTING INFORMATION

Ligand-stabilized CdSe Nanoplatelet Hybrid Structures with Tailored Geometric and Electronic Properties. New Insights from theory

A. Szemjonov,^a T. Pauporté,^a S. Ithurria,^b N. Lequeux,^b B. Dubertret,^b I. Ciofini^{a,*} and F. Labat^{a,*}

Figure S1. Absorption spectra of the 5, 7, 9 and 11 atomic layers (MLs) thick CdSe zinc blende nanoplatelets passivated by carboxylic acids.

Figure S2. Initial geometries of CdSe.HCOO with a) bidentate and b) monodentate adsorption mode of the HCOO⁻ ligand.

Table S1. Computed Mulliken atomic charges (in $|e^-|$) for 5 and 13 layers thick CdSe zinc blende slabs with HCOO, OH or SH ligands adsorbed on both of its [100] basal planes. Cd and Se atoms are indicated as Cd_n and Se_n where n=1-13 and n is the number of atomic layers, n=1 and n=5 (13) being the outermost layer of the slab. The atoms in equivalent positions with respect to the (100) surfaces are shown in parentheses.

CdSe.HCOO								
	5 layers		13 layers					
Cd _{1a} (Cd _{5a})	+0.882	Cd_{1a} (Cd_{13a})	+0.880					
Cd_{1b} (Cd_{5b})	+0.882	$\mathrm{Cd}_{1b}\left(\mathrm{Cd}_{13b}\right)$	+0.880					
$\operatorname{Se}_{2a}(\operatorname{Se}_{4a})$	-0.434	Se _{2a} (Se _{12a})	-0.430					
Se_{2b} (Se_{4b})	-0.434	$\operatorname{Se}_{2b}(\operatorname{Se}_{12b})$	-0.430					
Cd _{3a}	+0.430	Cd_{3a} (Cd_{11a})	+0.426					
Cd _{3a}	+0.430	Cd_{3a} (Cd_{11a})	+0.426					
O_1	-0.485	Se_{4a} (Se_{10a})	-0.427					
O_2	-0.610	Se _{4a} (Se _{10a})	-0.427					
С	+0.293	Cd ₅ (Cd ₉)	+0.424					
Н	+0.140	Se ₆ (Se ₈)	-0.427					
		\mathbf{Cd}_{7}	+0.423					
		O_1	-0.485					
		O_2	-0.611					
		С	+0.293					
		Н	+0.140					
		CdSe.SH						
	5 layers		13 layers					
Cd _{1a} (Cd _{5a})	+0.342	Cd _{1a} (Cd _{13a})	+0.341					
Cd_{1b} (Cd_{5b})	+0.348	Cd_{1b} (Cd_{13b})	+0.348					
Se _{2a} (Se _{4a})	-0.436	Se _{2a} (Se _{12a})	-0.435					
Se _{2b} (Se _{4b})	-0.448	$\operatorname{Se}_{2b}(\operatorname{Se}_{12b})$	-0.446					
Cd _{3a}	+0.448	Cd _{3a} (Cd _{11a})	+0.431					
Cd _{3b}	+0.448	Cd_{3b} (Cd_{11b})	+0.440					

S_1	-0.098	Se _{4a} (Se _{10a})	-0.423
S_2	-0.116	Se _{4a} (Se _{10a})	-0.423
\mathbf{H}_{1}	-0.052	Cd ₅ (Cd ₉)	+0.423
H_2	+0.013	Se ₆ (Se ₈)	-0.424
		Cd ₇	+0.422
		S_1	-0.097
		S_2	-0.118
		\mathbf{H}_{1}	-0.049
		H_2	+0.013
		CdSe.OH	
	5 layers		13 layers
Cd _{1a} (Cd _{5a})	+0.857	Cd_{1a} (Cd_{13a})	+0.856
Cd _{1b} (Cd _{5b})	+0.857	$\mathrm{Cd}_{1b}\left(\mathrm{Cd}_{13b}\right)$	+0.856
Se_{2a} (Se_{4a})	-0.434	Se _{2a} (Se _{12a})	-0.429
Se _{2b} (Se _{4b})	-0.434	$\operatorname{Se}_{2b}(\operatorname{Se}_{12b})$	-0.429
Cd _{3a}	+0.441	Cd_{3a} (Cd_{11a})	+0.432
Cd _{3b}	+0.441	$\mathrm{Cd}_{3\mathrm{b}}\left(\mathrm{Cd}_{11\mathrm{b}}\right)$	+0.432
0	-0.949	Se _{4a} (Se _{10a})	-0.427
Н	+0.306	Se _{4a} (Se _{10a})	-0.427
		Cd ₅ (Cd ₉)	+0.424
		Se ₆ (Se ₈)	-0.422
		Cd ₇	+0.422
		0	-0.950
		Н	+0.306

Table S2. Number of electrons on Cd, S and O atomic orbitals of 5 layers thick CdSe zinc blende slabs with HCOO, OH or SH ligands adsorbed on both of its [100] basal planes. All values are expressed in $|e^-|$.

CdSe.HCOO										
Cd ₁	4sp	4d	5sp	5d	6sp	6d	7sp			
	4.171	5.820	0.908	3.224	0.248	0.998	3.750			
O ₁	1sp	2sp	3sp	3d	4sp					
	1.998	2.715	2.660	0.024	1.087					
O_2	1sp	2sp	3sp	3d	4sp					
	1.999	2.714	2.698	0.020	1.179					
			CdS	e.SH						
Cd _{1a}	4sp	4d	5sp	5d	6sp	6d	7sp			
	4.181	5.797	0.851	3.204	0.852	1.031	3.742			
Cd_{1b}	4sp	4d	5sp	5d	6sp	6d	7sp			
	4.181	5.797	0.862	3.203	0.835	1.032	3.742			
S_1	1s	2s+2p	3s+3p	3d	4s+4p	5s+5p				
	2.010	4.759	3.313	0.049	5.295	0.672				
S_2	1s	2s+2p	3s+3p	3d	4s+4p	5s+5p				
	2.010	4.759	3.313	0.049	5.293	0.692				
			CdS	e.OH						
Cd ₁	4sp	4d	5sp	5d	6sp	6d	7sp			
	4.171	5.815	0.826	3.223	0.365	0.993	3.750			
0	1sp	2sp	3sp	3d	4sp					
	1.998	2.682	2.737	0.016	1.516					