Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A novel supported Cu catalyst with highly dispersed copper nanoparticles and its remarkable catalytic performance in methanol decomposition

Shaojun Qing^{a,§}, Xiaoning Hou^{a,§}, Yajie Liu^a, Hongjuan Xi^a, Xiang Wang^b, Chengmeng Chen^c, Zhiwei Wu^d, Zhixian Gao^{a,*}

a. Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

b. Institute of Applied Chemistry, Department of Chemistry, Nanchang University, Nanchang330031, China.

c. Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

d. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

* Corresponding Author. Tel.: +86 0351-4067440; E-mail address: gaozx@sxicc.ac.cn

I. Supports preparation

Powder SiO₂, starch and deionized water were mixed by the kneader, and then the mixture was extruded as a strip. The obtained strip was dried in air for 10h at 100°C. This starch modified SiO₂ was denoted as SiO₂-S, and the mass fraction of SiO₂ and starch was 85.0% and 15.0%, respectively. The SiO₂-S support calcined at 500°C was denoted as SiO₂-S-500.

Using the powder SiO_2 and deionized water as materials, the obtained strip was denoted as SiO_2 .

II. Catalysts preparation

The catalyst samples, with the same 22.5% Cu loading, were prepared by impregnating the supports with an aqueous solution of Cu(NO₃)₂. The samples were dried in air for 12h at 120°C and named as Cu(NO₃)₂/SiO₂, Cu(NO₃)₂/SiO₂-S and Cu(NO₃)₂/SiO₂-S-500. Then the dried samples were calcined in air or nitrogen at 300°C for 2h and reduced in pure H₂ at 300°C for 2h, and the obtained samples were denoted as Cu/SiO₂[300-Air], Cu/SiO₂-S[300-Air], Cu/SiO₂-S[3

III. Catalysts characterization

Temperature Programmed Reduction (TPR) was carried out on a FINESORB-3010C muti-function adsorption instrument using 0.03g sample for each run. The catalyst was loaded into a quartz tube and pretreated in Ar at 300 for 30min, then cooled to room temperature(RT). After that H₂-TPR was started from RT to 500°C at a heating rate of 10°C/min in 10ml/min of 10%H₂/Ar. A thermal conductivity detector(TCD) was used to monitor the consumption of H₂.

The surface area of metallic copper and copper dispersion was determined by the method of dissociative N₂O adsorption¹. Firstly, Catalysts were reduced at 300°C for

30min by the H₂-TPR procedure described above. In this step the amount of hydrogen consumption was denoted as X. Second, the temperature was cooled to 50° C in 10%H₂/Ar, then switch to 5%N₂O/He(10ml/min) for 30min. After that, decreased the temperature to RT, and the He was used to purge the catalyst for 30min. At last, the catalyst was reduced by the same H₂-TPR procedure of first step, and the amount of hydrogen consumption was denoted as Y. Based on above results, the dispersion(D) and surface area(S) of Cu were calculated as follows:

First step: $CuO+H_2 \rightarrow Cu+H_2O$ X=hydrogen consumptionSecond step: $2Cu+N_2O \rightarrow Cu_2O+N_2$ Third step: $Cu_2O+H_2 \rightarrow 2Cu+H_2O$ Y= hydrogen consumption

$$D = \frac{2Y}{X} * 100\%$$
$$S = \frac{1353 * Y * Cu\%}{X} \text{ (m2-Cu/g-Cat.)}$$

Cu%: the content of Cu in the catalyst

The X-ray diffraction patterns (XRD) were recorded on a Rigaku MiniFlex II desktop X-ray diffractometer (30 KV, 15 mA) in a 20 range of 10-80° with Cu K α radiation to identify the crystalline phases and estimate the relative crystallinities of samples. The particle sizes of CuO were calculated by using Scherrer equation.

X-ray photoelectron spectroscopy(XPS) was carried out on a AXIS ULTRA DLD(Kratos) with Al K α radiation(hv=1486.6eV). The binding energies were reference to C 1s(284.8eV).

The high resolution transmission electron microscopy (HRTEM) images of catalysts were obtained by a JEM 2010 microscope operating at 200kV. The samples were dispersed in ethanol by ultrasonic for 30min. The obtained suspension liquid was deposited on copper grids coated with amorphous carbon films.

Thermo Gravimetric-Differential Thermal Analyzer (TG-DTA) of supports and dried catalyst samples were carried out on a TG-60 thermal analyzer(Shimadzu) at a heating rate of 5°C/min from 40°C to 500°C under the atmosphere of Air or N₂.

IV. Catalysts test

Methanol decomposition was carried out in a 10ml fixed-bed down-flow reactor. The catalyst (8-14 mesh) was loaded into the constant temperature section of the reactor. Prior to catalytic reaction, the catalyst was reduced in pure H₂ at 300°C for 2h. After that, methanol was fed into the reaction. The reaction conditions were 300°C, atmospheric pressure, weight hourly space velocity(WHSV) of 1.56h⁻¹. The products were analyzed by using an on-line gas chromatograph.

V. Tables and Figures

		1 1	5			
catalyst	Cu dispersion	S_{Cu}^{0}	d_{CuO}	\mathbf{d}_{Cu}	d_{Cu}	$R_{Cu/Si}{}^{e}$
	(%) ^a	(m ² /g-cat.) ^a	(nm) ^b	(nm) ^c	(nm) ^d	
Cu/SiO ₂ [300-Air]	4.3	6.5	15.3	20	25.1	0.008
Cu/SiO ₂ -S[300-Air]	21.3	31.5	8.6	8.0	8.7	0.061
Cu/SiO ₂ -S-500[300-Air]	8.4	12.3	16.3	-	-	-

Table S1. The properties of catalysts

a. Cu dispersion and surface area of $Cu^{0}(S_{Cu}^{0})$ were determined by method of dissociative N₂O adsorption. b. Diameter of CuO particles calculated from the XRD data (Figure 1) of the (111) peak broading of CuO by Scherrer equation. c. Diameter of Cu particles (after reduced) calculated from the XRD data (Figure S5) of the (111) peak broadening of Cu by Scherrer equation. d. Diameter of Cu particles (after used) calculated from the XRD data (Figure S5) of the (111) peak broadening of Cu by Scherrer equation. e. Mole ratio of Cu to Si of the catalysts determined by XPS(Figure S3).

A: TG B: DTA

Figure S2 TPR profiles of fresh samples(after calcination)

Figure S3 Cu2p and Si2p XPS photoemission peaks of fresh samples (after calcination)

Figure S4 TEM and HRTEM images of fresh Catalysts (after calcination) A-B: Cu/SiO₂[300-Air], C-D: Cu/SiO₂-S[300-Air]

Figure S5 The X-Ray diffraction patterns of catalysts Cu/SiO₂[300-Air]:A-reduced, B-used Cu/SiO₂-S[300-Air]:C-reduced, D-used

VI Reference

[1] (a) J.L. Gong, H.R. Yue, Y.J. Zhao, S. Zhao, L. Zhao, J. Lv, S.P. Wang, X.B.
Ma, J. Am. Chem. Soc. 2012, 134, 13922-13925. (b) Z.L. Yuan, L.N. Wang, J.H.
Wang, S.X. Xia, P. Chen, Z.Y. Hou, X.M. Zheng, Appl. Catal. B: Environ. 2011, 101, 431-440.