Supporting Information

Conversion of highly concentrated fructose into 5-hydroxymethylfurfural by acid-base

bifunctional HPA nanocatalysts induced by choline chloride

Qian Zhao^a, Zhong Sun^a, Shengtian Wang^a, Guohui Huang^{b,*}, Xiaohong Wang^{a,*}, Zijiang Jiang^{c,*}

- ^a Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. Fax: 0086-431-85099759; Tel.: 0086-431-88930042; E-mail address: wangxh665@nenu.edu.cn
- ^b School of Life Science, Northeast Normal University, Changchun 130024, China. Tel.: 0086-431-85099607; E-mail address: huanggh699@nenu.edu.cn
- ^c Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022,

P. R. China. Tel.: 0086-431- 85262452; E-mail address: jzj2002@sohu.com

Experimental

The Hammett acid strength was measured by exposing samples (0.1g) to benzene solutions of a known amount of selected Hammett indicators (methyl violet, pKa = +0.8; anthraquinone, pKa = -8.2; 2,4,6-trinitroaniline, pKa = -10.1; p-nitrotoluene, pKa = -11.35; p-nitrochlorobenzene, pKa = -12.7; 2,4- dinitrotoluene, pKa = -13.75; 2,4-dinitrofluorobenzene, pKa = -14.52). UV-Vis spectra of the air dried samples were recorded to quantify the amount of indicator adsorbed on the surface of the catalyst. And the Hammett base strength was also determined in the same method, which was measured by exposing samples of catalysts (0.1g) to benzene solutions of a known amount of selected Hammett indicators (bromothymol blue, pKa = 7.2; phenolphthalein, pKa = 9.3; 2,4,6-Trinitrobenzene amine, pKa = 12.2; 2,4-dinitraniline, pKa = 15.0; 4-chloride-2–nitroaniline, pKa = 17.2).

The acid capacity of $Ly_{3-x}H_xPW$ and $H_3PW_{12}O_{40}$ was measured by titration. A sample of catalyst (0.1g) was stirred with 2M NaCl (20 mL). After 24 h, Filter to remove the solid, the filtrate was measured by titration with NaOH (0.05 M). The indicator was phenolphthalein.¹⁻²

1 D. E. Lopez, K. Suwannakarn, D. A. Bruce, J. G. Goodwin Jr., J. Catal. 2007, 247, 43-50.

2 A. A. Kiss, A. C. Dimian, G. Rothenberg, Adv. Synth. Catal. 2006, 348, 75-81.

Fig. S1 The TEM image and the Energy dispersive X-ray spectroscopic data of $(C_6H_{15}O_2N_2)_2HPW_{12}O_{40}$

Fig. S2 The CMC of $Ly_{3-x}H_xPW$ in room temperature

Fig. S3 Low-angle XRD patterns of $Ly_{3-x}H_xPW$.

Fig. S4 The thermal analysis (TG/DTA) curves of $Ly_{3-x}H_xPW$.

Fig. S5 The different fructose/ChCl weight ratio of fructose conversion. Reaction conditions: 110 °C in 1 min. a. fructose/ChCl weight ratio is 2:6; b. fructose/ChCl weight ratio is 3:6; c. fructose/ChCl weight ratio is 4:6; d. fructose/ChCl weight ratio is 5:6.

Fig. S6 The IR spectra of Ly_2HPW (a) and reused Ly_2HPW (b).

Table S1 HMF formation from fructose in low melting mixtures. Ly_2HPW (0.016 mmol) was used as catalyst in all cases; the reaction temperature was 110 °C in 1 min.

	Choline chloride	Imidazole	Malonic acid	urea	Guanidineacetic acid
HMF	92.3%	62.5%	39.9%	25.7%	<5%

Catalysts	System	Concentration	T(°C)	time	Yield(%)	Con.(%)	Ref
[MBClm]SO ₃ Cl	acetonitrile/ water	33wt%	80	3h	81		[1]
Al-SBA ₁₅	water: MIBK	10wt%	165	1h		59	[2]
CuHPO ₄ ·H ₂ O	water	10wt%	200	5min	14.3	92.3	[3]
H ₃ PO ₄	water	10wt%	200	5min	29.1	93.5	
4-styrenesulfonic-	water	6.6wt%	120	6h	27	80	[4]
formic acid	n hutanal/water	6 6wt%	170	60min	60.2	08.3	[5]
NhPO pH2	water	0.0w1/0	120	30min	45	57.6	[5]
Ambersty 15	water	8wt%	130	30min	45	61.6	[0]
PHC	water	0W170	110	50min	91.5 84	01.0	[7]
EaCl /Et NPr	water /NMD=1:1	10wt%	00	120min	84 70		[/]
A a DW O	water /MIP-1.1	10Wt%	90	120min	70 7 7 7	010	[0]
$Ag_{3}F W_{12}O_{40}$ $TES AS SDA 15$	water /MIBK	20wt%	120	141min	//./	02.0 94	[9]
1ESAS-SBA-15	water /MIBK/2-butanol	20mm40/	120	141min		84 70	[10]
pSO3H-SBA-15	water /MIBK/2-butanol	20wt%	130	140min		/9 81	
Ambarluat 70	water /MIBK/2-butanol	20wt%	130	14011111 225min		01	
Chu TaQU	water /MIBK/2-Dutanoi	50W1%	120	225mm	0	85	[11]
Glu-IsOH	water	8WI%	200	1.5n	8	67	[11]
H_3PO_4	water	10wt%	200	Smin	28.2		[12]
CaP_2O_6	water	10wt%	200	Smin	34.1		
$a-Sr(PO_3)_2$	water	10wt%	200	Smin	39.3	07.2	[12]
ZnCl ₂ /HCl	water	15wt%	120	40min	53.3	97.3	[13]
B(OH) ₃ /MgCl ₂	MIBK/ water	30wt%	150	45min	52	81	[14]
AICI ₃	water /MIBK/microwave	Swt%	130	Smin	61.6		[15]
AICI ₃	water / microwave	5wt%	120	5min	54.8		
AlCl ₃	water / microwave	30wt%	120	Smin	52.1	100	
Nb ₂ O ₅	DMSO	2wt%	120	2h	86.2	100	[16]
Amberlyst-15	DMF	13wt%	120	lh	64		[17]
Amberlyst-15	DMSO	13wt%	120	lh	83		
PS-NHC-Al	DMSO	8.2wt%	100	3h	70	93	[18]
PS-NHC-Sn	DMSO	8.2wt%	100	3h	71	89	
PS-NHC-Cr	DMSO	8.2wt%	100	3h	64	83	
PS-NHC-Fe	DMSO	8.2wt%	100	3h	73	97	
Amberlyst 15	DMSO	8.2wt%	100	3h	65	79	
NBS	NMP	8wt%	90	1h	56.1		[19]
NBS	DMSO	8wt%	100	2h	47.5		
SnCl ₄ +NBS	NMP	8wt%	100	2h	82.3		
[AMIM]Cl	DMF	7.2wt%	100	45min	84.9	99	[20]
	DMSO/microwave	15wt%	150	10min	71	100	[21]
InCl ₃	water	5wt%	180	10min	76	100	[22]
([tetraEG(mim) (triethylamo)]		10wt%	70	40min	92	100	[23]

Table S2 The comparison between different catalysts on dehydration of fructose

[HSO ₄] ₂)							
$[C_6(mpy)_2][NiCl_4]^{2-}$	DMSO	7wt%	110	60min	95.5	95.6	[24]
НССР	DMSO	5wt%	90	2h	91	98.9	[25]
HCl	water/butanol	54.6wt%	170	20min	81.7	92	[26]
STZ-05	DMSO	10wt%	120	2.5h	76		[27]
Si–OH	H3PO4/ DMSO/H2O	0.25%	80	5h	97		[28]
FeCl ₃	[Bmim]Cl	3.6%	100	4h	90.8		[29]
K-10 clay-CrCl ₃	DMSO	4.5%	120	2h	95.8		[30]
K-10 clay-CrCl ₃	[BMIM]Cl	4.5%	120	1h	95.4		

Reference

- [1] T. Okano, K. Qiao, Q. Bao, D. Tomida, Appl. Catal. A: Gen., 2013, 451, 1-5.
- [2] N. Lucas, G. Kokate, A. Nagpure, S. Chilukuri, Micropor. Mesop. Mater., 2013, 181, 38-46.
- [3]P. Khemthong, P. Daorattanachai, N. Laosiripojana, K. Faungnawakij, Catal. Commun., 2012, 29, 96-100.
- [4] C. Tian, C. Bao, A. Binder, Chem.Commun., 2013, 49, 8668-8670.
- [5] N. Jiang, R. Huang, W. Qi, Bioenerg. Res., 2012, 5, 380-386.
- [6] Y. Zhang, J. Wang, J. Ren, Catal. Sci. Technol., 2012, 2, 2485-2491.
- [7] K. Vigier, A. Benguerba, J. Barrault, F. Jerome Green Chem., 2012, 14, 285-289.
- [8] X. Tong, M. Li, N. Yan, Catal. Today., 2011, 175, 524-527.
- [9] C. Fan, H. Guan, H. Zhang, Biomass. Bioenerg., 2011, 35, 2659-2665.
- [10] A. J. Crisci, M. H. Tucker, M. Lee, ACS Catal., 2011, 1, 719-728.
- [11] J. Wang, W. Xu, J. Ren, Green Chem., 2011, 13, 2678-2681.
- [12] P. Daorattanachai, P. Khemthong, N. Viriya-empikul, Carbohydr. Res., 2012, 363, 58-61.
- [13] T. Deng, X. Cui, Y. Qi, Chem. Commun., 2012, 48, 5494-5496.
- [14] T. S. Hansen, J. Mielby, A. Riisager, Green Chem., 2011, 13, 109-114.
- [15] S. De, S. Dutta, B. SahaGreen, Chem., 2011, 13, 2859-2868.
- [16] F. F. Wang, H. Z. Wu, C. L. Liu, R. Z. Yang, W. S. Dong, Carbohydr. Res., 2013, 368, 78-83.
- [17] G. Sampath, S. Kannan, Catal. Commun., 2013, 37, 41-44.
- [18] Y. H. Kim, S. Shin, H. Yoon, J. W. Kim, J. K. Cho, Y. Lee, Catal. Commun., 2013, 40, 18-22.
- [19] G. Tian, X. Tong, Y. Wang, Y. Yan, S. Xue, Res Chem Intermed., 2013, 39, 3255-3263.
- [20] J. C. Shi, Y. Yang, N. N. Wang, Z. X. Song, Catal. Commun., 2013, 42, 89-92.
- [21] S. Despax, C. Maurer, B. Estrine, J. L. Bras, N. Hoffmann, S. Marinkovic, J. Muzart, Catal.

Commun., 2014, 51, 5-9.

- [22] Y. Shen, Y. Xu, J. Sun, B. Wang, F. Xu, R. Sun, Catal. Commun., 2014, 50, 17-20.
- [23] A. H. Jadhav, A. Chinnappan, R. H. Patil, S. V. Kostjuk, H. Kim, Chem. Eng. J., 2014, 243, 92-98.
- [24]A. Chinnappan, A. H. Jadhav, H. Kim, W. Chung, Chem. Eng. J., 2014, 237, 95-100.
- [25] Z. Huang, Y. Pan, Y. Chao, W. Shen, C. C. Wang, H. L. Xu, RSC Adv., 2014, 4, 13434-13437.
- [26] N. Jiang, W. Qi, R. Huang, M. Wang, R. Su, Z. He, J. Chem. Technol. Biotechnol., 2014, 89, 56-64.
- [27] Y. H. Wang, X. Tong, Y. T. Yan, S. Xue, Y. Y. Zhang, Catal. Commun., 2014, 50, 38-43.
- [28] K. Tsutsumi, N. Kurata, E. Takata, K. Furuichi, M. Nagano, K. Tabata, Appl. Catal. B: Environ., 2014, 147, 1009-1014.
- [29] X. Zhou, Z. Zhang, B. Liu, Q. Zhou, S. Wang, K. Deng, J. Ind. Eng. Chem., 2014, 20, 644-649.
- [30] Z. F. Fang, B. Liu, J. J. Luo, Y. S. Ren, Z. H. Zhang, Biomass. Bioenerg., 2014, 60, 171-177.