Electronic Supporting Information for

A luminescent terbium MOF containing uncoordinated

carboxyl groups exhibits highly selective sensing for Fe³⁺ ions

Wei Sun, Jinzeng Wang, Guonan Zhang and Zhiliang Liu*

College of Chemistry and Chemical Engineering, Key Lab of Nanoscience

and Nanotechnology, Inner Mongolia University, Hohhot, 010021, P. R.

China *Corresponding author. Fax: +86-471-4992147 Tel: +86-471-

4995414

E-mail addresses: <u>cezlliu@imu.edu.cn</u> (Z. L. Liu)

Contents

1. Materials and methods:

2. Structure of H_4 btca.

3. Preparation of TbMOF-COOH:

4. X-ray Crystallography:

Table S1. Crystal data and structure refinement parameters for TbMOF-

COOH.

Table S2. Selected bond distances (Å) and angles (°) for TbMOF-COOH.

Fig S1 Thermogravimetric analyses of TbMOF-COOH.

Fig S2 Soild-state excitation (dashed) and emission spectra (solid) of TbMOF-COOH.

Fig S3 The luminescence intensities of TbMOF-COOH immersed in the

individual aqueous solution of M^{z+} ions.

Fig S4 (a) Variation of luminescence intensity of TMOF-COOH solid power immersed in 0.01M Fe³⁺ aqueous solution. (b) The corresponding luminescence intensities of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition.

Fig S5 The UV-vis absorption spectrum of the 0.01M different metal ion aqueous solutions.

1. Materials and methods:

All reagents and solvents were used as received from commercial supplies without further purification.

Fourier transform infrared (FTIR) spectra (KBr disk) were measured with a TENSOR 27 FI-IR spectrophotometer. Elemental analyses for C and H were obtained from a Perkin-Elmer 2400 elemental analyzer. The TG curves were recorded on a STA409PC Thermal analyzer were performed under the N₂ atmosphere and at a heating rate of 10°C/min over the temperature range of 20~1100°C. Powder X-ray diffraction pattern (PXRD) was carried out on a EMPYREAN PANALYTICAL apparatus.

The luminescence spectra for the powdered solid samples were obtained at room temperature on a Hitachi F-7000 fluorescence spectrophotometer. PMT Voltage = 700V, the excitation slit and the emission slit were 1 nm. The luminescence sensing properties of TbMOF-COOH in aqueous solution were examined under the same conditions except that excitation slit and the emission slit were 5 nm.

The solid-excitation and emission spectra of TbMOF-COOH were investigated at room temperature. To explore the luminescence sensing properties of TbMOF-COOH in aqueous solution, the testing emulsions were prepared by dispersing the grinding TbMOF-COOH into aqueous solution containing various metal ions under ultrasonication for 30 min and stirring for 6h.

2. Structure of H₄btca

[1,1'-biphenyl]-2,3,3',5'-tetracarboxylic acid(H₄btca)

3. Preparation of TbMOF-COOH:

A mixture of Tb(NO₃)₃·6H₂O (0.5 mmol), H₄btca (0.5 mmol) and distilled water (16 ml) was sealed in a Teflon-lined stainless vessel (25ml). The vessel was heated to 140°C in 4 h and kept for 96 h under autogenous pressure. Then the reaction system was cooled to room temperature at a rate of 3°C/h. Flaxen block-like crystals were collected by filtration, washed with water, and then dried in the air.

[Tb(Hbtca)(H₂O)₂]·H₂O (TbMOF-COOH) Yield: 75 % (based on Tb³⁺). Elemental analysis calculated (%) for $C_{16}H_{13}O_{11}Tb$ (540.18): C, 35.57; H, 2.42, Found: C, 35.55; H, 2.43. IR data (KBr pellet, cm⁻¹): 3566(w), 3378(w), 1703(m), 1618(s), 1533(m), 1449(s), 1389(s), 1243(w), 778(s), 735 (s).

4. X-ray Crystallography:

Structure determination was performed on a Agilent Xcalibur E X-ray single crystal diffractometer equipped with graphite-monochromatic Mo-Ka radiation ($\lambda = 0.71073$ Å) at 293K. Empirical absorption corrections were applied using the SADABS program.¹ The structure of TbMOF-COOH was solved by direct methods and refined anisotropically by full-matrix least squares techniques on F^2 values, using the SHELX-97 program.² Hydrogen atoms were added on appropriate positions in theory and refined with isotropic thermal parameters riding on those parent atoms. The corresponding crystallographic and refinement data for TbMOF-COOH are listed in Table S1. Selected bond lengths and angles are listed in Table S2. CCDC-1005400 TbMOF-COOH, corresponds to containing the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

References

1 G. M. Sheldrick, Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Göttingen, 1996.

2 G. M. Sheldrick, SHELXTL. Bruker Analytical X-ray Instruments Inc. version 5.1. Madison, WI, 1998.

COOH. TbMOF-COOH Compound Empirical formula C16 H13 O11 Tb Formula weight 540.18 Temperature (K) 293(2) K Wavelength (Å) 0.71073 Crystal system Triclinic Space group *P*-1 *a*/ Å 8.8300(9) *b*/ Å 10.2225(11) *c/* Å 10.2870(12) $\alpha/(^{\circ})$ 66.855(11) β/(°) 74.036(10) $\gamma/(^{\circ})$ 75.820(9) Ζ 2 Density(calculated) 2.212 *F*(000) 524 Crystal size/mm³ 0.03 x 0.02 x 0.01 Range for data collection/(°) 2.50 - 25.02 Limiting indices $-9 \le h \le 10$, $-12 \le k \le 11$, $-12 \le l \le 12$ 5078 / 2856 [R(int) = 0.0712]Reflections collected / unique 2856 / 720 / 253 Data / restraints / parameters Goodness-of-fit on F² 1.018 Volume / Å³ 810.99(15) Final R indices $[I \ge 2\sigma(I)]$ $R_1 = 0.0527$, $wR_2 = 0.0788$ R indices (all data) $R_1 = 0.0743$, $wR_2 = 0.0951$

Table S1. Crystal data and structure refinement parameters for TbMOF-

Bond length (A)			
Tb(1)-O(3)A	2.287(5)	Tb(1)-O(7)B	2.345(6)
Tb(1)–O(8)C	2.343(6)	Tb(1)-O(4)D	2.393(5)
Tb(1)–O(2)	2.435(5)	Tb(1)-O(9w)	2.446(5)
Tb(1)–O(1)	2.467(6)	Tb(1)-O(10w)	2.503(6)
Bond angle(°)			
O(3)A-Tb(1)-O(7)B	76.9(2)	O(3)A-Tb(1)-O(8)C	79.6(2)
O(7)B-Tb(1)-O(8)C	130.0(2)	O(3)A-Tb(1)-O(4)D	124.6(2)
O(7)B-Tb(1)-O(4)D	75.6(2)	O(8)C-Tb(1)-O(4)D	82.9(2)
O(3)A-Tb(1)-O(2)	86.9(2)	O(7)B–Tb(1)–O(2)	79.7(2)
O(8)C-Tb(1)-O(2)	141.9(2)	O(4)D–Tb(1)–O(2)	132.7(2)
O(3)A-Tb(1)-O(9w)	143.4(2)	O(7)B-Tb(1)-O(9w)	139.3(2)
O(8)C-Tb(1)-O(9w)	71.3(2)	O(4)D-Tb(1)-O(9w)	73.7(2)
O(2)–Tb(1)–O(9w)	102.6(2)	O(3)A–Tb(1)–O(1)	135.2(2)
O(7)B–Tb(1)–O(1)	76.4(2)	O(8)C-Tb(1)-O(1)	144.1(2)
O(4)D–Tb(1)–O(1)	81.7(2)	O(2)–Tb(1)–O(1)	53.4(2)
O(9w)–Tb(1)–O(1)	73.4(2)	O(3)A-Tb(1)-O(10w)	77.3(2)
O(7)B–Tb(1)–O(10w)	140.8(2)	O(8)C-Tb(1)-O(10w)	72.5(2)
O(4)D-Tb(1)-O(10w)	143.7(2)	O(9w)–Tb(1)–O(10w)	73.3(2)
O(2)–Tb(1)–O(10w)	69.8(2)	O(1)-Tb(1)-O(10w)	102.9(2)

Table S2. Selected bond distances (Å) and angles (°) for TbMOF-COOH.

A: -*x*+2, -*y*+1, -*z*; B: -*x*+1, -*y*+1, -*z*+1; C: *x*+1, *y*+1, *z*-1; D: *x*, *y*+1, *z*.

Fig. S1 Thermogravimetric analyses of TbMOF-COOH.

Fig. S2 Soild-state excitation (dashed) and emission spectra (solid) of TbMOF-COOH.

Fig. S3 The luminescence intensities of TbMOF-COOH immersed in the individual aqueous solution of M^{z+} ions ($M^{z+} = Ni^{2+}$, Cu^{2+} , Cr^{3+} , Ca^{2+} , Zn^{2+} , Co^{2+} , Mg^{2+} , Cd^{2+} , Al^{3+} , Fe^{2+} , Mn^{2+} and Fe^{3+} , 0.01 M).

Fig. S4 (a) Variation of luminescence intensity of TMOF-COOH solid powder immersed in 0.01M Fe^{3+} aqueous solution. (b) The corresponding

luminescence intensities of the ${}^5D_4 {\rightarrow} {}^7F_5$ transition.

Fig. S5 The UV-vis absorption spectrum of the 0.01M different M^{z+} (M^{z+} = Ni²⁺, Cu²⁺, Cr³⁺, Ca²⁺, Zn²⁺, Mn²⁺, Co²⁺, Mg²⁺, Cd²⁺, Al³⁺, Fe²⁺ and Fe³⁺) aqueous solution.