Supplementary Information

Promotion of low-temperature oxidation of CO over Pd supported on titania-coated ceria

Atsushi Satsuma,^{*,a,b} Masatoshi Yanagihara,^a Kaoru Osaki,^a Yurina Saeki,^a Heng Liu,^a Yuta Yamamoto,^c Shigeo Arai,^c and Junya Ohyama ^{a,b}

^a Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.

^b Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto 615-8530, Japan.

^c Ecotopia Science Institute, Nagoya University, Nagoya, 464-8603

* Corresponding author: FAX: +81-52-789-3193; Tel: +81-52-789-4608; E-mail: satsuma@apchem.nagoya-u.ac.jp

Fig. S1 XRD patterns of TiO_2 - and CeO_2 -based supported Pd catalysts. The patterns were recorded using XRD patterns were recorded on a Rigaku MiniFlex II/AP diffractometer with Cu K α radiation.

Fig. 2S TEM/EDS micrographs of TiO_2/CeO_2 support. TiO_2 (5.4 wt%) was impregnated at 4 °C using $TiCl_4$ as a precursor. The micrographs were recorded using JEOL-200 kV Cs-corrected S/TEM.

Fig. 3S Estimation of initial reduction and oxidation rates by weight deviation during O_2 -H₂ periodic operation at 300 °C. Estimated reduction rates are -0.54 × 10⁻⁶ mol-O₂ g⁻¹ s⁻¹ for Pd/TiO₂, and -1.8 × 10⁻⁶ mol-O₂ g⁻¹ s⁻¹ for Pd/CeO₂ and Pd/TiO₂/CeO₂. Estimated oxidation rates are 0.94 × 10⁻⁶ mol-O₂ g⁻¹ s⁻¹ for all three catalysts.