Electronic Supplementary Information (ESI)

Durable superhydrophobic $ZnO-SiO_2$ films: A new approach to enhance the abrasion resistant property of trimethylsilyl functionalized SiO_2 nanoparticles on glass[†]

5 Indranee Das,^a Manish Kr Mishra,^a Samar K Medda^a and Goutam De*^a

^aNano-Structured Materials Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India

Fig. S1 TGA of SH-Zn and SH powders. The dynamic TGA of SH-Zn and SH powders previously heated at 100 °C (a). The TGA of as-prepared SH-Zn powder with 1 h isothermal at 140, 300 and 400 °C (b). Both measurements were performed at heating rate of 10 °C min⁻¹ in pure nitrogen.

Fig. S2 Contact angle images of water drops (volume 6 μl) on SH coatings heated at 60, 140, 300 and 400 °C before and after abrasion and immersion.

10

5

Table S1. Increasing trend of transparency of SH-Zn coatings on glass with systematic heat treatment from 60 to 400 °C under nitrogen atmosphere.

Sample (SH-Zn) heated at different temperature (°C)	Average % T in the range 400-800 nm
60	63.0
140	77.5
300	81.0
400	86.0

15