Supporting Information

FeCl₃ and Ether Mediated Direct Intramolecular Acylation of Esters and its Application in Efficient Preparation of Xanthone and Chromone Derivatives

Neng Jiang,^a Su-Yi Li,^a Sai-Sai Xie,^a Hequan Yao,^b Hongbin Sun,^c Xiao-Bing Wang,^{*,a} and

Ling-Yi Kong*,a

^a State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry,

China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China, ^b

Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang,

Nanjing 210009, P. R. China, and ^cCenter for Drug Discovery, College of Pharmacy, China

Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China.

* Corresponding author. Tel/Fax: +86-25-83271405.

E-mail: cpu_lykong@126.com, xbwang@cpu.edu.cn

Table of Contents	
The data of the single crystal X-ray diffraction for compounds 2a, 4a, 4d	S3-S4
NMR Data	S5-S60
¹ H and ¹³ C NMR for compound 2a	S5
¹ H and ¹³ C NMR for compound 2b	S7
¹ H and ¹³ C NMR for compound 2c	S9
¹ H and ¹³ C NMR for compound 2d	S11
¹ H and ¹³ C NMR for compound 2e	S13
¹ H and ¹³ C NMR for compound 2g	S15
¹ H and ¹³ C NMR for compound 2h	S17
¹ H and ¹³ C NMR for compound 2i	S19
¹ H and ¹³ C NMR for compound 2 j	S21

¹ H and ¹³ C NMR for compound 2k	S23
¹ H and ¹³ C NMR for compound 2 I	S25
¹ H and ¹³ C NMR for compound 2m	S27
¹ H and ¹³ C NMR for compound 2n	S29
¹ H and ¹³ C NMR for compound 20	S31
¹ H and ¹³ C NMR for compound 2p-1	\$33
¹ H and ¹³ C NMR for compound 2p-2	\$35
¹ H and ¹³ C NMR for compound 2 q	S37
¹ H and ¹³ C NMR for compound 2r	S39
¹ H and ¹³ C NMR for compound 4a	S41
¹ H and ¹³ C NMR for compound 4b	S43
¹ H and ¹³ C NMR for compound 4c	S45
¹ H and ¹³ C NMR for compound 4d	S47
¹ H and ¹³ C NMR for compound 4e	S49
¹ H and ¹³ C NMR for compound 4f	S51
¹ H and ¹³ C NMR for compound 4g	\$53
¹ H and ¹³ C NMR for compound 4h	S55
¹ H and ¹³ C NMR for compound 4i	S57
¹ H and ¹³ C NMR for compound 4 j	S59
¹ H NMR for a mixture of I and II	S61

2a

4a

4d

Fig. S1 Molecular structure of 2a, 4a, 4d^[1]

Reference

[1] CCDC 982623 (**2a**). Crystal data for compound **2a**: $C_{13}H_8O_2$, M = 196.19, orthorhombic, a=4.8978(14) Å, $\alpha = 90^\circ$, b = 13.654(5) Å, $\beta = 90^\circ$, c = 14.129(5) Å, $\gamma = 90^\circ$, V = 944.9(6) Å3, T = 291(2) K, space group = P2₁2₁2₁, Z = 4, number of reflections = 7057, independent reflections = 1762, [R_{int}= 0.0655], final R indices[I >= 2 δ (I)] R₁ = 0.1100, wR₂ = 0.1685, R indices (all data) R₁ = 0.1625, wR₂ = 0.1900. CCDC 982620 (**4a**). Crystal data for compound **4a**: C₉H₈O₂, M =148.15, monoclinic, a = 8.6255(4) Å, $\alpha = 90^\circ$, b = 6.6197(3) Å, $\beta = 90.297(4)^\circ$, c = 13.1658(7) Å, $\gamma = 90^\circ$, V = 751.73(6) Å3, T = 291(2) K, space group = P21/n, Z= 4, number of reflections = 6402, independent reflections = 1528, [R_{int}= 0.0201], final R indices[I >= 2 δ (I)] R₁ = 0.0396, wR₂= 0.1031, R indices (all data) R₁ = 0.0525, wR₂ = 0.1130. CCDC 982630 (**4d**). Crystal data for compound **4d**: C₁₆H₁₂O₃, M=252.26, orthorhombic, a = 13.5324(8) Å, $\alpha = 90^\circ$, b = 7.0687(4) Å, $\beta = 90^\circ$, c = 25.6858(17) Å, $\gamma = 90^\circ$, V = 2457.0(3) Å3, T = 290(2) K, space group = Pbca, Z = 8, number of reflections = 9593, independent reflections = 2871, [R_{int}= 0.0274], final R indices [I >= 2 δ (I)] R₁= 0.0465, wR₂= 0.1021, R indices (all data) R₁= 0.0736, wR₂= 0.1163.

