Supporting Information for

Solution behavior of reverse triblock reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) copolymers with lengthy hydrophilic blocks.

Adriana Cambón,^{a⊥}Edgar Figueroa-Ochoa,^{b⊥}Rosa Pujales,^a Silvia Barbosa,^{*a} José Félix Armando Soltero,^b Pablo Taboada,^a Víctor Mosquera^a

^aGrupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada; 15782-Santiago de Compostela, Spain. ^bLaboratorio de Reología, Departamento de Ingeniería Química, CUECI, Universidad de Guadalajara, Blv. M. García Barragán 44430, Jalisco, México.

*Authors to whom correspondence should be addressed: silvia.barbosa@usc.es

 \perp These authors contribute equally to this work

 $Table \ S1. \ Lowest \ clouding \ temperatures \ for \ some \ BO_n EO_m BO_n \ triblock \ copolymers.$

Copolymer	$T_{cl, min}$ (°C)	Copolymer	$T_{cl, min}$ (°C)	Copolymer	$T_{cl, min}$ (°C)
BO23EO68BO23	4.0	BO12EO260BO12	25.0	BO20EO411BO20	41.5
BO ₁₂ EO ₇₆ BO ₁₂	12.0	BO ₁₀ EO ₂₇₁ BO ₁₀	32.0	BO ₁₀ EO ₄₁₀ BO ₁₀	53.0
BO ₅ EO ₉₁ BO ₅	53.0	BO ₁₂ EO ₂₂₇ BO ₁₂	32.0	BO ₂₁ EO ₃₈₅ BO ₂₁	50.2
BO ₈ EO ₉₀ BO ₈	43.0	BO ₁₀ EO ₂₂₇ BO ₁₀	45.0	BO ₁₄ EO ₃₇₈ BO ₁₄	59.7

Figure S1. Strain sweep texts for copolymers a) $BO_8EO_{90}BO_8$ and b) $BO_{20}EO_{411}BO_{20}$ at different concentrations. The straight line points to the beginning of the non-linear region.

Figure S2. Plots of G'_{max} against concentration for copolymers a) (**O**) BO₁₂EO₁₁₄BO₁₂ and (\bowtie) BO₈EO₉₀BO₈; and b) for (**O**) BO₂₀EO₄₁₁BO₂₀ (\bowtie) BO₁₄EO₃₇₈B₁₄, and (**D**) BO₂₁EO₃₈₅B₂₁.

Figure S3. Master curve plots obtained for copolymer $BO_{20}EO_{411}BO_{20}$ at 12 wt.% (reference temperature $T_r = 10^{\circ}C$).

Figure S4. Arrhenius plot for scaling parameter a_T for copolymer BO₈EO₉₀BO₈ at 8 wt.%.