# Poly(lactide-*co*-ε-caprolactone) Copolymers by Bis-Thioetherphenolate Group 4 Metal Complexes: Synthesis, Characterization and Morphology

Francesco Della Monica,<sup>a</sup> Ermanno Luciano,<sup>a</sup> Antonio Buonerba,<sup>a</sup> Alfonso Grassi,<sup>a</sup> Stefano Milione<sup>a,\*</sup> and Carmine Capacchione<sup>a</sup>

<sup>*a*</sup> Dipartimento di Chimica e Biologia and NANOMATES, Research Centre for NANOMAterials and nanoTEchnology at Salerno University, Università degli Studi di Salerno, via Giovanni Paolo II, 132-84084 Fisciano (SA), Italy.

\*E-mail: smilione@unisa.it

## **Electronic Supplementary Information**

## **Table of Contents**

| 1. NMR Characterization.                                                                                                                                                      | 3 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Figure S1. Carbonyl range of <sup>13</sup> C NMR spectra (CDCl <sub>3</sub> , 25 °C) of copolymers obtained by 1                                                              | 3 |
| Figure S2. Carbonyl range of <sup>13</sup> C NMR spectra (CDCl <sub>3</sub> , 25 °C) of copolymers obtained by 2                                                              | 4 |
| Figure S3. Carbonyl range of <sup>13</sup> C NMR spectra (CDCl <sub>3</sub> , 25 °C) of copolymers obtained by 3                                                              | 5 |
| 2. Calculation of average block lengths.                                                                                                                                      | 6 |
| Figure S4. Average block lengths of caprolactone (up) and lactide (down) in the copolymers obtained by                                                                        |   |
| 1 (left), 2 (middle) and 3 (right).                                                                                                                                           | 6 |
| 3. Thermal Analysis.                                                                                                                                                          | 7 |
| <b>Figure S5</b> . DSC thermogram of the copolymers CL/LA obtained with complex 1 (traces of the second heating cycle with a heating rate of 10°C min <sup>-1</sup> ).        | 7 |
| <b>Figure S6</b> . DSC thermogram of the copolymers CL/LA obtained with complex <b>2</b> (traces of the second heating cycle with a heating rate of 10°C min <sup>-1</sup> ). | 8 |
| <b>Figure S7</b> . DSC thermogram of the copolymers CL/LA obtained with complex <b>3</b> (traces of the second heating cycle with a heating rate of 10°C min <sup>-1</sup> ). | 9 |
| <b>Figure S8</b> . Plots of the dependence of $T_g$ of CL/LA copolymers on the molar % caprolactone in copolymers.                                                            | 0 |
| 4. AFM Characterization                                                                                                                                                       | 1 |
| <b>Figure S9.</b> Height and phase contrast TM-AFM micrographs of CL/LA copolymer of run <b>6</b> of Table 1 thermal treated at 50 °C for 15 min                              | 1 |
| <b>Figure S10.</b> Height and phase contrast TM-AFM micrographs of CL/LA copolymer of run <b>11</b> of Table 1 annealed at 50 °C for 15 min                                   | 1 |
| Figure S11. Height and phase contrast TM-AFM micrographs of CL/LA copolymer of run 8 of Table 1.12                                                                            | 2 |
| <b>Figure S12.</b> Height and phase contrast TM-AFM micrographs of CL/LA copolymer of run <b>5</b> of Table 1 annealed at 100 °C for 15 min.                                  | 2 |

#### 1. NMR Characterization.



Figure S1. Carbonyl range of <sup>13</sup>C NMR spectra (CDCl<sub>3</sub>, 25 °C) of copolymers obtained by 1.



Figure S2. Carbonyl range of <sup>13</sup>C NMR spectra (CDCl<sub>3</sub>, 25 °C) of copolymers obtained by 2.



Figure S3. Carbonyl range of <sup>13</sup>C NMR spectra (CDCl<sub>3</sub>, 25 °C) of copolymers obtained by 3.

#### 2. Evaluation of average block lengths.

The average block lengths of L-lactide ( $L_{LA}$ ) and  $\varepsilon$ -caprolactone ( $L_{CL}$ ) units in the copolymers were calculated using the following equations (P.Vanhoorne, P.Dubois, R. Jeromeand P.Teyssie, *Macromolecules*, 2012, **25**, 37-44):

$$L_{CL} = \left(\frac{I_{CCC} + I_{LLCC}}{I_{CCLL} + I_{LLCLL}}\right) + 1$$
$$L_{LA} = \frac{\left(I_{LLLLL} + \left(\frac{I_{LLLLC} + CLLLL}}{2}\right)\right)}{\left(\left(\frac{I_{LLLLC} + CLLLL}{2}\right) + I_{CLC}\right) + 1} * \frac{1}{2}$$

in which I indicates the integral of the signals attributed to triad sequence in the carbonyl range of <sup>13</sup>C NMR spectrum, the subscript C stands for the caproyl unit and the subscript L stands for the lactidyl unit.

The figure S4 shows the calculated values respect to the theoretical values in the case of an ideal random copolymerization with  $r_{LA} = r_{CL} = 1$  ( $L_{m1} = r_{m2} + r_{m1} [m_1]/[m_2]$ ).



Figure S4. Average block lengths of caprolactone (up) and lactide (down) in the copolymers obtained by 1 (left), 2 (middle) and 3 (right).



### 3. Thermal Analysis.

Figure S5. DSC thermograms of the CL/LA copolymers obtained with complex 1 (profiles from second heating cycles with a heating rate of  $10^{\circ}$ C min<sup>-1</sup>).



Figure S6. DSC thermogram of the copolymers CL/LA obtained with complex 2 (profiles from second heating cycles with a heating rate of  $10^{\circ}$ C min<sup>-1</sup>).



Figure S7. DSC thermogram of the copolymers CL/LA obtained with complex 3 (traces of the second heating cycle with a heating rate of  $10^{\circ}$ C min<sup>-1</sup>).



**Figure S8**. Plots of the dependence of  $T_g$  of CL/LA copolymers on the molar % caprolactone in copolymers.



#### 4. AFM Characterization.

**Figure S9.** Height and phase contrast TM-AFM micrographs of CL/LA copolymer of run **6** of Table 1 thermal treated at 50 °C for 15 min.



**Figure S10.** Height and phase contrast TM-AFM micrographs of CL/LA copolymer of run **11** of Table 1 annealed at 50 °C for 15 min.



Figure S11. Height and phase contrast TM-AFM micrographs of CL/LA copolymer of run 8 of Table 1.



**Figure S12.** Height and phase contrast TM-AFM micrographs of CL/LA copolymer of run **5** of Table 1 annealed at 100 °C for 15 min.