Synthesis, structural characterization and computational studies of layered metal phosphonates: $[M(HO_3P-C_5H_4N-PO_3H)_2(H_2O)_2]_n$ $[M^{II} = Co, Zn, Cd]$

Magdalena Wilk,^{*a} Katarzyna N. Jarzembska,^b Jan Janczak,^c Marek Duczmal,^a Józef Hoffmann^a and Veneta Videnova-Adrabinska^{*a}

^a Department of Chemistry, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland. E-mail: magdalena.wilk@pwr.edu.pl, Veneta.Videnova-Adrabinska@pwr.edu.pl

^b Department of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland.

^c Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 2 Okólna St., 50-950 Wrocław, Poland.

Fig. S1 Comparison of simulated (blue) and experimental (black) powder X-ray diffraction patterns for compound **1**.

Fig. S2 Comparison of simulated (blue) and experimental (black) powder X-ray diffraction patterns for compound **2**.

Fig. S3 Comparison of simulated (blue) and experimental (black) powder X-ray diffraction patterns for compound **3**.

Fig. S4 Superposition of experimental (black) and optimized (red) crystal structures of (a) compound **2** and (b) compound **3**.

Table S1. Atomic coordinates of the CRYSTAL09-optimized crystal structures of compound	ls
2 and 3 .	

Compound 2				
_atom_site_label				
_atom_site_fract_x				
_atom_site_fract_y				
_atom_site_fract_z				
Zn	4.332408683506E-20 1.954123817023E-20 -6.232825597122E-20			
N1	-4.410267203522E-01 -2.720599899454E-01 3.957543450705E-02			
H1N	-4.124265158421E-01 -2.725540079474E-01 1.301927562377E-01			
C2	4.438644379696E-01 -1.877864370742E-01 -6.101449985409E-03			
H2	3.854905505968E-01 -1.219902672604E-01 5.314556097468E-02			
C3	4.043909151838E-01 -1.896093103949E-01 -1.242710258555E-01			
C4	4.864535969819E-01 -2.800592920214E-01 -1.936556197137E-01			
H4	4.567495122965E-01 -2.839494902111E-01 -2.862371620308E-01			
C5	-3.959963847251E-01 -3.683510299890E-01 -1.438037959825E-01			
C6	-3.613117476612E-01 -3.601439522617E-01 -2.476254394744E-02			

H6	-2.720208355151E-01 -4.223318129272E-01 2.290468637859E-02
Р3	2.378295413949E-01 -9.253764748301E-02 -1.858912445329E-01
O31	1.858607876604E-01 1.405483555158E-02 -9.573526060195E-02
O32	1.344300924989E-01 -2.224820571995E-01 -2.348945995807E-01
O33	2.843390714034E-01 -3.013990655242E-03 -2.963014113052E-01
H33	3.217601828755E-01 1.058126379470E-01 -2.823323541745E-01
P5	-2.854254841208E-01 -4.912152015570E-01 -2.288139927004E-01
051	-3.632401696717E-01 4.922429813333E-01 -3.495134896775E-01
052	-2.481962163670E-01 3.614219749906E-01 -1.599292973609E-01
053	-1.365681166469E-01 -3.912036780688E-01 -2.298634383058E-01
H53	-1.633074100476E-01 -2.900896207057E-01 -2.676030796622E-01
O1W	1.249044055075E-02 -2.470078818525E-01 4.454789046810E-03
H1W	9.597780421422E-02 -2.951030979700E-01 5.119606593153E-02
H2W	7.469585224542E-04 -2.940077007345E-01 -7.168725091952E-02

Compound 3

_atom_site_label

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Cd	-1.444112965012E-19 9.524493683410E-36 0.00000000000E+00
N1	-4.471837554199E-01 -2.671463096121E-01 3.780834530831E-02
H1N	-4.198937266959E-01 -2.682918406008E-01 1.273567623385E-01
C2	4.383895704929E-01 -1.864705991800E-01 -1.015751038690E-02
H2	3.756215648089E-01 -1.237976479857E-01 4.670576609137E-02
C3	4.052765438539E-01 -1.877007104685E-01 -1.278395424496E-01
C4	4.920881396231E-01 -2.748875636434E-01 -1.938782945539E-01
H4	4.674241958657E-01 -2.774542106350E-01 -2.858196287446E-01
C5	-3.917019898998E-01 -3.600501941246E-01 -1.415134888776E-01
C6	-3.626619221309E-01 -3.515643204717E-01 -2.342733606211E-02
Н6	-2.740429876680E-01 -4.105093092502E-01 2.574019055614E-02
P3	2.439370229019E-01 -8.895670159000E-02 -1.934590464751E-01
031	1.947180528868E-01 2.293104676910E-02 -1.066632846133E-01
O32	1.389277707409E-01 -2.167382842538E-01 -2.405400089238E-01

Fig. S5 Complementary IR (red) and Raman (green) spectra of compound 1.

Fig. S6 Complementary IR (red) and Raman (green) spectra of compound 2.

Fig. S7 Complementary IR (red) and Raman (green) spectra of compound 3.

-	-					
1		2		3		
IR	Raman	IR	Raman	IR	Raman	Band assignment ^a
3555 s		3553 s		3553 s		v(O-H) _{water}
3333 s br		3265 s br		3276 s br		ν(N–H)
3261 m		3176 s		3178 s		
3204 m						
3087 s	3089 vw	3084 s	3089 vw	3083 s	3086 vw]
3059 m	3062 vw		3061 vw		3061 vw	ν (C–H)
3005 m				3004 m		-
2933 m		2925 s		2925 m		
2853 m br		2854 s br		2854 m br		
		2795 s br				
2747 m br		2746 s br		2735 s br		
2676 m br		2672 s br		2668 s br		ν (O–H)
2422 m br		2422 m br		2422 m br		
2355 m br		2362 m br		2358 m br		
2283 m br		2284 m br		2283 m br)
2113 m		2114 m		2113 m		
2052 m		2044 m		2044 m		
1964 w		1965 w		1965 m		
1880 w		1868 w		1868 w		
1800 w		1797 vw		1800 w		
1624 s	1624 vw	1616 s	1622 vw	1622 s	1618 vw	$\int v(C-C)$
	1570 vw	1562 w	1570 vw	1562 w	1566 vw	$\int v(C-C)$
1400 m		1399 m		1399 s	1400 vw	
1369 w		1361 w		1361 w	1361 vw	$\int v(C=N)$
1263 s	1260 vw	1266 s	1258 vw	1266 s	1251 vw	δ(N–H)
1218 s		1230 s		1227 s		
	1204 vw	1209 s	1204 vw	1209 s	1207 vw	
1178 vs		1176 vs		1176 vs		v(P=O)

Table S2 Positions and assignments of vibrational bands, observed in FTIR and Ramanspectra of compounds 1-3.

					1168 vw	
1140 s		1136 s		1136 vs		
	1108 vw		1108 vw		1106 w	
1072 vs	1068 vw	1075 vs	1067 vw	1075 vs	1073 vw	ν(P–O)
	1030 m		1029 vs		1027 vs	δ(С–Н)
999 m	1003 vw	1003 s	1000 vw	1002 s	1009 vw	v(P–C)
					962 vw	
933 s	941 vw	932 vs	939 w	932 vs	938 w	v(P–O)
909 s						
	903 vw		903 vw		900 vw	
899 s		896 s		896 s		
836 m		849 m		852 m		
819 m	820 vw	817 m	819 vw	816 s	817 vw	$\int \gamma(C-H)$
	698 vw		697 vw		694 vw	
691 s	684 w	690 s	683 vw	690 s	681 w	out-of-plane ring
						def. vib.
	574 vw		573 vw		575 vw	
553 vs	549 vw	552 vs	548 vw	552 vs	550 vw	
					516 vw	
504 s		500 s		500 vs		$\delta(\mathbf{PO}_{r})$
476 m		467 m		468 m		$\left(\begin{array}{c} O(\Gamma O_2) \end{array} \right)$
					435 vw	
417 m	417 vw	417 m	418 vw	417 m	419 vw)
379 m	383 vw	376 m	383 vw	377 m	380 vw	
	353 vw				353 vw	
	335 vw		334 vw		332 vw	
	319 w		318 vw		314 vw	
	306 w		306 vw		301 vw	
	289 w		288 vw		287 w	
	277 vw		278 vw		274 vw	
	250 w		247 vw		250 w	
	192 w		193 w			
					183 w	

172 m	172 m	
		166 vs
149 m	149 m	
		140 s
123 m	122 m	
111 vs	110 vs	107 vs
92 m	91 m	90 m
77 vs	76 vs	77 s
65 w	64 w	

^{a)}Abbreviations: vs – very strong, s – strong, m – medium, w – weak, vw – very weak, br – broad, v – stretching, δ – in-plane deformation vibration, γ – out-of-plane deformation vibration.

Fig. S8 TG-DTA curves of compound 1.

Fig. S9 TG-DTA curves of compound 2.

Fig. S10 TG-DTA curves of compound 3.