ELECTRONIC SUPPLEMENTARY INFORMATION

CO₂ Adduct of Lewis Acid-Base Pair (LBCO₂LA; LB = PMe₃, NHC and LA = AlH₃, AlCl₃, BH₃) – Analogues to Carboxylic Acid and its Derivatives

Indu Purushothaman,^a Susmita De^{*a}, Pattiyil Parameswaran^{*a}

CONTENTS

Figure S1: The α -NOCV pair of orbitals Ψ_{-1}/Ψ_1 and Ψ_{-2}/Ψ_2 with their eigen values in parenthesis, the associated deformation density plots $\Delta \rho_1$ and $\Delta \rho_2$ and orbital stabilization energies ΔE for the LB–C_{CO2LA} bond (LB = PMe₃, NHC and LA = AlCl₃, AlH₃, BH₃) in PMe₃CO₂AlH₃ (1), PMe₃CO₂AlCl₃ (2), PMe₃CO₂BH₃ (3), NHCCO₂AlH₃ (4), NHCCO₂AlCl₃ (5), NHCCO₂BH₃ (6) and R–C_{CO2R'} bond (R, R' = CH₃, H) in HCOOH (7), CH₃COOH (8) and CH₃COOCH₃ (9) at the BP86/TZ2P level of theory using ADF 2013.01 package. The direction of the charge flow in the deformation density plot $\Delta \rho$ is from red \rightarrow blue. Isosurface value for the α -NOCV pair of orbitals is 0.04 and that for the deformation density is 0.003.

Figure S2: The α -NOCV pair of orbitals $\Psi_{.1}/\Psi_1$ and $\Psi_{.2}/\Psi_2$ with their eigen values in parenthesis, the associated deformation density plots $\Delta \rho_1$ and $\Delta \rho_2$ and orbital stabilization energies ΔE for the _{LBCO2}O–LA bond (LB = PMe₃, NHC and LA = AlCl₃, AlH₃, BH₃) in PMe₃CO₂AlH₃ (1), PMe₃CO₂AlCl₃ (2), PMe₃CO₂BH₃ (3), NHCCO₂AlH₃ (4), NHCCO₂AlCl₃ (5), NHCCO₂BH₃ (6) and _{RCO2}O–R' bond (R, R' = CH₃, H) in HCOOH (7), CH₃COOH (8) and CH₃COOCH₃ (9) at the BP86/TZ2P level of theory using ADF 2013.01 package. The direction of the charge flow in the deformation density plot $\Delta \rho$ is from red \rightarrow blue. Isosurface value for the α -NOCV pair of orbitals is 0.04 and that for the deformation density is 0.003.

Table S1: Energy Decomposition Analysis data of LB– C_{CO2LA} bond (LB = PMe₃, NHC and LA = AlCl₃, AlH₃, BH₃) in PMe₃CO₂AlH₃ (**1**), PMe₃CO₂AlCl₃ (**2**), PMe₃CO₂BH₃ (**3**), NHCCO₂AlH₃ (**4**), NHCCO₂AlCl₃ (**5**), NHCCO₂BH₃ (**6**) and R– $C_{CO2R'}$ bond (R, R' = CH₃, H) in HCOOH (**7**), CH₃COOH (**8**) and CH₃COOCH₃ (**9**) at the BP86/TZ2P level of theory using ADF 2013.01 package. Energies are in kcal/mol.

Table S2: Energy Decomposition Analysis data of $_{LBCO2}O$ –LA bond (LB = PMe₃, NHC and LA = AlCl₃, AlH₃, BH₃) in PMe₃CO₂AlH₃ (**1**), PMe₃CO₂AlCl₃ (**2**), PMe₃CO₂BH₃ (**3**), NHCCO₂AlH₃ (**4**), NHCCO₂AlCl₃ (**5**), NHCCO₂BH₃ (**6**) and $_{RCO2}O$ –R' bond (R, R' = CH₃, H) in HCOOH (**7**), CH₃COOH (**8**) and CH₃COOCH₃ (**9**) at the BP86/TZ2P level of theory using ADF 2013.01 package. Energies are in kcal/mol.

Ms. P. Indu, Dr. S. De, Dr. P. Parameswaran Department of Chemistry, National Institute of Technology Calicut, NIT Calicut Campus P.O., Kozhikode -673 601, Kerala, India. E-mail: param@nitc.ac.in, susmitade1980@gmail.com

Table S3: The optimized Cartesian coordinates and the total bonding energies (in a.u.) including zero point energy correction of all the calculated molecules at the BP86/TZ2P level of theory (E) using ADF 2013.01. Symmetry of the structures is mentioned in the parenthesis. The number of imaginary frequencies is abbreviated as Nimag.

Table S4: Important geometrical parameters of the optimized geometries and the corresponding crystal structures of CO_2 adduct of Lewis acid-base pair, carboxylic acids and esters. Bond lengths are given in angstroms and angles in degrees.

Table S5: EDA-NOCV results for $CH_3COOC_2H_5$ (10) and $C_2H_5COOC_3H_7$ (11) at the BP86/TZ2P level of theory using ADF 2013.01 package. Energies are in kcal/mol

Table S6: Detail description of different bonding schemes described in Scheme 2.

Table S1 : Energy Decomposition Analysis data of LB– C_{CO2LA} bond (LB = PMe₃, NHC and LA = AlCl₃, AlH₃, BH₃) in PMe₃CO₂AlH₃ (1), PMe₃CO₂AlCl₃ (2), PMe₃CO₂BH₃ (3), NHCCO₂AlH₃ (4), NHCCO₂AlCl₃ (5), NHCCO₂BH₃ (6) and R– $C_{CO2R'}$ bond (R, R' = CH₃, H) in HCOOH (7), CH₃COOH (8) and CH₃COOCH₃ (9) at the BP86/TZ2P level of theory using ADF 2013.01 package. Energies are in kcal/mol.

	1	1	2	2		3		4		5	(6	,	7	1	8	ç)
Bond	Р→С	$P^+ - C^-$	Р→С	$P^+ - C^-$	Р→С	$P^+ - C^-$	C→C	$C^+ - C^-$	C→C	$C^+ - C^-$	С→С	C ⁺ -C	$H^{-} \rightarrow C^{+}$	H–C	$C \rightarrow C^+$	C–C	$C \rightarrow C^+$	C–C
ΔE_{int}	-66.4	-162.7	-77.9	-152.8	-61.9	-168.8	-85.8	-196.1	-112.5	-197.2	-89.1	-201.6	-331.9	-107.5	-349.2	-107.3	-332.3	-105.7
ΔE_{Pauli}	243.4	197.3	239.5	193.3	196.6	170.4	397.1	267.4	417.0	277.3	392.2	277.6	297.0	121.6	402.1	264.5	404.86	265.6
ΔE^{a}	-136.8	-206.6	-135.1	-195.4	-113.9	-196.2	-222.5	-244.5	-234.2	-243.1	-221.0	-257.3	-301.6	-71.8	-392.6	-159.6	-380.5	-160.5
elstat	(44.2%)	(57.4%)	(42.6%)	(56.5%)	(44.0%)	(57.8%)	(46.1%)	(52.8%)	(44.2%)	(51.2%)	(45.9%)	(53.7%)	(48.0%)	(31.4%)	(52.2%)	(42.9%)	(51.6%)	(43.2%)
ΔE	-173.1	-153.5	-182.3	-150.7	-144.7	143.1	-260.4	-219.0	-295.3	-231.4	-260.3	-221.9	-327.3	-157.2	-358.8	-212.3	-356.7	-210.8
orb	(55.8%)	(42.6%)	(57.4%)	(43.5%)	(56.0%)	(42.2%)	(53.9%)	(47.2%)	(55.8%)	(48.8%)	(54.1%)	(46.3%)	(52.0%)	(68.6%)	(47.8%)	(57.1%)	(48.4%)	(56.7%)
ΔE^{b}	-144.6	-123.9	-153.3	-122.3	-120.8	-116.3	-213.4	-182.3	-230.7	-179.5	-212.5	-182.3	-318.9	-142.4	-316.1	-185.4	-314.0	-184.8
σ	(83.5%)	(71.6%)	(84.1%)	(81.2%)	(83.5%)	(81.3%)	(82.0%)	(83.2%)	(78.1%)	(77.6%)	(81.6%)	(82.2%)	(97.4%)	(90.6%)	(88.1%)	(87.3%)	(88.0%)	(87.7%)
ΔE^{b}	-6.0	-6.5	-6.1	-6.1	-5.1	-5.6	-16.4	-12.2	-19.8	-13.5	-16.9	-13.8	-3.3	-10.0	-18.5	-10.5	-16.8	-9.9
π	(3.5%)	(3.8%)	(3.3%)	(4.0%)	(3.5%)	(3.9%)	(6.3%)	(5.6%)	(6.7%)	(5.8%)	(6.5%)	(6.2%)	(1.0%)	(6.4%)	(5.2%)	(4.9%)	(4.7%)	(4.7%)
$\Delta E_{rest}{}^{b,c}$	-22.5	-42.7	-22.9	-22.3	-18.8	-21.2	-30.6	-35.5	-44.8	38.4	-30.9	-25.8	-5.1	-4.8	-24.2	-16.4	-25.9	16.1
	(13.0%)	(24.7%)	(12.6%)	(14.8%)	(13.0%)	(14.8%)	(11.8%)	(16.2%)	(15.2%)	(16.6%)	(11.9%)	(11.6%)	(1.6%)	(3.1%)	(6.7%)	(7.7%)	(7.3%)	(7.6%)
ΔE_{prep}	51.8	148.0	56.1	131.0	49.7	156.6	50.4	160.7	59.9	144.6	55.3	167.8	227.5	3.1	254.7	12.8	239.5	13.9
$\Delta E_{(-D_e)}$	-14.7	-14.7	-21.8	-21.8	-12.2	-12.2	-35.4	-35.4	-52.6	-52.6	-33.8	-33.8	-104.4	-104.4	-94.5	-94.5	-92.8	-92.8
$\Delta E_{orb} / \Delta E_{elstat}$	1.27	0.74	1.35	0.77	1.27	0.73	1.17	0.90	1.26	0.95	1.18	0.86	1.09	2.19	0.91	1.33	0.94	1.31

^aValues in parenthesis give the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb}$

^bValues in parenthesis give the percentage contribution to orbital interaction ΔE_{orb}

 $^{c}\Delta E_{rest} = \Delta E_{orb} - (\Delta E_{\sigma} + \Delta E_{\pi})$

	1	1	2	2		3	4	1	1	5		6	7	7	8	3	9)
Bond	O→Al	0 ⁺ –Al	O→Al	0 ⁺ –Al	О→В	0 ⁺ -B ⁻	O→Al	0 ⁺ –Al	O→Al	0 ⁺ –Al	О→В	0 ⁺ -B ⁻	$O^{\text{-}} {\rightarrow} H^{\text{+}}$	O–H	$0^{-} \rightarrow \mathrm{H}^{+}$	O–H	$0^+ \rightarrow C^-$	0–C
ΔE_{int}	-39.8	-218.7	-54.2	-211.6	-44.8	-231.3	-36.4	-233.9	-67.3	-233.9	-40.3	-230.8	-356.9	-136.1	-362.2	-117.9	-280.6	-99.2
ΔE_{Pauli}	69.3	209.6	89.7	265.6	109.2	319.5	56.4	181.3	102.0	246.6	97.6	252.3	0.0	287.5	0.0	261.0	189.8	359.4
ΔE	-65.8	-199.3	-85.5	-214.8	-73.5	-251.7	-57.9	-179.0	-93.7	-208.0	-65.4	-212.7	-182.9	-116.5	-183.7	-95.8	-248.9	-159.8
elstat	(60.4%)	(46.5%)	(59.4%)	(45.0%)	(47.7%)	(45.7%)	(62.5%)	(43.1%)	(55.4%)	(43.3%)	(47.4%)	(44.0%)	(51.2%)	(27.5%)	(50.7%)	(25.3%)	(52.9%)	(34.8%)
ΔE^{a}	-43.2	-228.9	-58.4	-262.4	-80.5	-299.1	-34.8	-236.2	-75.6	-272.6	-72.5	-270.4	-174.0	-307.1	-178.5	-283.1	-221.4	-298.9
orb	(39.6%)	(53.5%)	(40.6%)	(55.0%)	(52.3%)	(54.3%)	(37.5%)	(56.9%)	(44.6%)	(56.7%)	(52.6%)	(56.0%)	(48.8%)	(72.5%)	(49.3%)	(74.7%)	(47.1%)	(65.2%)
ΔF ^b	-22.7	-211.5	-29.2	-244.0	-60.1	-278.9	-21.2	-225.9	-31.0	-245.3	-56.0	-251.4	-127.7	-295.5	-129.2	-271.6	-174.8	-279.9
ΔL _σ	(52.5%)	(92.4%)	(50.0%)	(93.0%)	(74.7%)	(93.2%)	(60.9%)	(95.6%)	(41.0%)	(90.0%)	(77.2%)	(93.0%)	(73.4%)	(96.2%)	(72.4%)	(95.9%)	(79.0%)	(93.6%)
ΔE^{b}	-5.7	-3.4	-9.7	-4.5	-4.8	-2.8	-4.4	-3.7	-12.0	-6.8	-4.8	-8.3	-22.8	-6.4	-23.0	-4.9	-18.0	-7.7
π	(13.9%)	(1.5%)	(16.6%)	(1.7%)	(6.0%)	(0.01%)	(12.6%)	(1.6%)	(15.9%)	(2.5%)	(6.6%)	(3.1%)	(13.1%)	(2.1%)	(12.9%)	(1.7%)	(8.1%)	(2.6%)
$\Delta E_{rest}^{\ b,c}$	-14.8	-14.0	-19.5	-13.9	-15.6	-17.4	-9.2	-6.6	-32.6	-20.5	-11.7	-10.7	-23.5	-5.2	-26.3	-6.6	-28.6	-11.3
	(34.3%)	(6.1%)	(33.4%)	(5.3%)	(19.4%)	(5.8%)	(26.4%)	(2.8%)	(43.1%)	(7.5%)	(16.1%)	(3.9%)	(13.5%)	(1.7%)	(14.7%)	(2.3%)	(12.9%)	(3.8%)
ΔE_{prep}	22.5	201.4	28.8	186.2	32.3	218.8	7.5	205.0	20.6	187.3	15.7	206.3	245.6	24.7	254.6	10.3	199.4	18.1
$\Delta E_{(-D_e)}$	-17.3	-17.3	-25.4	-25.4	-12.5	-12.5	-28.9	-28.9	-46.7	-46.7	-24.5	-24.5	-111.3	-111.3	-107.6	-107.6	-81.1	-81.1
$\Delta E_{orb} / \Delta E_{elstat}$	0.65	1.15	0.68	1.22	1.09	1.19	0.60	1.32	0.81	1.31	1.11	1.27	0.95	2.64	0.97	2.95	0.89	1.87

Table S2: Energy Decomposition Analysis data of $_{LBCO2}O-LA$ bond (LB = PMe₃, NHC and LA = AlCl₃, AlH₃, BH₃) in PMe₃CO₂AlH₃ (1), PMe₃CO₂AlCl₃ (2), PMe₃CO₂BH₃ (3), NHCCO₂AlH₃ (4), NHCCO₂AlCl₃ (5), NHCCO₂BH₃ (6) and $_{RCO2}O-R'$ bond (R, R' = CH₃, H) in HCOOH (7), CH₃COOH (8) and CH₃COOCH₃ (9) at the BP86/TZ2P level of theory using ADF 2013.01 package. Energies are in kcal/mol.

^aValues in parenthesis give the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb}$

^bValues in parenthesis give the percentage contribution to orbital interaction ΔE_{orb}

 $^{c}\Delta E_{rest} = \Delta E_{orb} - (\Delta E_{\sigma} + \Delta E_{\pi})$

PMe₃CO₂AlH₃(1)

 $\Psi_{-2}(-0.10)$

 $\Psi_1(0.51)$

 $\Psi_{2}(0.10)$

 $\Delta \rho_1 (\Delta E=-123.9 \text{ kcal/mol})$

 $\Delta \rho_2(\Delta E=-6.5 \text{ kcal/mol})$

PMe₃CO₂AlCl₃(2)

 $\Psi_{-1}(-0.53)$

 $\Psi_{-3}(-0.09)$

 $\Psi_1(0.53)$

Ψ₃(0.09)

 $\Delta \rho_1 (\Delta E=-122.3 \text{ kcal/mol})$

Figure S1 (Contd.)

$\underline{PMe_3CO_2BH_3(3)}$

 $\Psi_{-1}(-0.48)$

 $\Psi_1(0.48)$

Ψ-3(-0.09)

 $\Psi_{3}(0.09)$

 $\Delta \rho_3 (\Delta E=-5.6 \text{ kcal/mol})$

NHCCO₂AlH₃(4)

Ψ-1(-0.48)

Ψ-2(-0.16)

 $\Delta \rho_1(\Delta E=-182.3 \text{ kcal/mol})$

 $\Delta \rho_2(\Delta E=-12.2 \text{ kcal/mol})$

Figure S1 (Contd.)

 $\Psi_2(0.16)$

NHCCO₂AlCl₃(5)

 $\Psi_{-1}(-0.50)$

 $\Psi_1(0.50)$

 $\Delta \rho_1(\Delta E=-179.5 \text{ kcal/mol})$

 $\Psi_{-2}(-0.15)$

 $\Psi_{2}(0.15)$

 $\Delta \rho_2(\Delta E=-13.5 \text{ kcal/mol})$

<u>NHCCO₂BH₃(6)</u>

Ψ-2(-0.20)

 $\Psi_2(0.20)$

 $\begin{array}{c} \Delta \rho_2 (\Delta E \mbox{=-}13.8 \ kcal/mol) \\ {\bf Figure \ S1 \ (Contd.)} \end{array}$

 $\Psi_{-2}(-0.13)$

 $\Delta \rho_2(\Delta E=-10.5 \text{ kcal/mol})$

Figure S1 (Contd.)

Figure S1: The α -NOCV pair of orbitals $\Psi_{.1}/\Psi_1$ and $\Psi_{.2}/\Psi_2$ with their eigen values in parenthesis, the associated deformation density plots $\Delta \rho_1$ and $\Delta \rho_2$ and orbital stabilization energies ΔE for the LB–C_{CO2LA} bond (LB = PMe₃, NHC and LA = AlCl₃, AlH₃, BH₃) in PMe₃CO₂AlH₃ (1), PMe₃CO₂AlCl₃ (2), PMe₃CO₂BH₃ (3), NHCCO₂AlH₃ (4), NHCCO₂AlCl₃ (5), NHCCO₂BH₃ (6) and R–C_{CO2R'} bond (R, R' = CH₃, H) in HCOOH (7), CH₃COOH (8) and CH₃COOCH₃ (9) at the BP86/TZ2P level of theory using ADF 2013.01 package. The direction of the charge flow in the deformation density plot $\Delta \rho$ is from red \rightarrow blue. Isosurface value for the α -NOCV pair of orbitals is 0.04 and that for the deformation density is 0.003.

PMe₃CO₂AlH₃(1)

 $\Delta \rho_1(\Delta E=-22.7 \text{ kcal/mol})$

 $\Psi_1(0.35)$

 $\Psi_{-1}(-0.35)$

Ψ-2(-0.18)

 $\Psi_{2}(0.18)$

 $\Delta \rho_2(\Delta E=-5.7 \text{ kcal/mol})$

PMe₃CO₂AlCl₃(2)

 $\Psi_{-1}(-0.40)$

 $\Delta \rho_2(\Delta E=-9.7 \text{ kcal/mol})$

Figure S2 (Contd.)

 $\Psi_{-2}(-0.24)$

S10

 $\Psi_{2}(0.24)$

<u>PMe₃CO₂BH₃ (3)</u>

 $\Psi_1(0.54)$

 $\Delta \rho_1(\Delta E=-60.1 \text{ kcal/mol})$

 $\Psi_{-1}(-0.54)$

Ψ-3(-0.19)

 $\Psi_2(0.19)$

 $\Delta \rho_3 (\Delta E=-4.8 \text{ kcal/mol})$

NHCCO₂AlH₃ (4)

Ψ-1(-0.34)

 $\Psi_1(0.34)$

 $\Delta \rho_1 (\Delta E=-21.2 \text{ kcal/mol})$

Ψ-2(-0.25)

Ψ₂(0.25)

Figure S2 (Contd.)

NHCCO₂AlCl₃ (5)

 $\Delta \rho_1 (\Delta E=-31.0 \text{ kcal/mol})$

 $\Psi_{-2}(-0.30)$

 $\Psi_{2}(0.30)$

 $\Delta \rho_2(\Delta E=-12.0 \text{ kcal/mol})$

NHCCO₂BH₃(6)

 $\Psi_{-1}(-0.52)$

 $\Psi_1(0.52)$

 $\Delta \rho_1 (\Delta E=-56.0 \text{ kcal/mol})$

Figure S2 (Contd.)

<u>HCOOH (7)</u>

 $\Psi_{-1}(-0.59)$

 $\Psi_{-2}(-0.30)$

 $\Psi_1(0.59)$

 $\Psi_{2}(0.30)$

 $\Delta \rho_2(\Delta E=-22.8 \text{ kcal/mol})$

<u>CH₃COOH (8)</u>

 $\Psi_{-1}(-0.60)$

Ψ-2(-0.30)

 $\Psi_1(0.60)$

 $\Delta \rho_1(\Delta E=-129.2 \text{ kcal/mol})$

 $\Delta \rho_2(\Delta E=-23.01 \text{ kcal/mol})$

Figure S2 (Contd.)

 $\Psi_{2}(0.30)$

CH₃COOCH₃(9)

Figure S2: The α -NOCV pair of orbitals $\Psi_{.1}/\Psi_1$ and $\Psi_{.2}/\Psi_2$ with their eigen values in parenthesis, the associated deformation density plots $\Delta \rho_1$ and $\Delta \rho_2$ and orbital stabilization energies ΔE for the $_{LBCO2}O$ -LA bond (LB = PMe₃, NHC and LA = AlCl₃, AlH₃, BH₃) in PMe₃CO₂AlH₃ (1), PMe₃CO₂AlCl₃ (2), PMe₃CO₂BH₃ (3), NHCCO₂AlH₃ (4), NHCCO₂AlCl₃ (5), NHCCO₂BH₃ (6) and $_{RCO2}O$ -R' bond (R, R' = CH₃, H) in HCOOH (7), CH₃COOH (8) and CH₃COOCH₃ (9) at the BP86/TZ2P level of theory using ADF 2013.01 package. The direction of the charge flow in the deformation density plot $\Delta \rho$ is from red \rightarrow blue. Isosurface value for the α -NOCV pair of orbitals is 0.04 and that for the deformation density is 0.003.

Table S3: The optimized Cartesian coordinates and the total bonding energies (in a.u.) including zero point energy correction of all the calculated molecules at the BP86/TZ2P level of theory (E) using ADF 2013.01. Symmetry of the structures is mentioned in the parenthesis. The number of imaginary frequencies is abbreviated as Nimag.

$\underline{PMe_{3}CO_{2}AlH_{3}(1)}(C_{1})$

E= -3.563608

Nimag=0	
---------	--

15	1.050934000	0.149399000	0.091205000
6	2.459531000	-0.997076000	-0.060242000
1	2.363569000	-1.568401000	-0.993672000
1	3.407749000	-0.442013000	-0.065797000
1	2.428526000	-1.697458000	0.782994000
6	1.301684000	1.133287000	1.602591000
1	2.268318000	1.654967000	1.561966000
1	0.476932000	1.854921000	1.678049000
1	1.281058000	0.455792000	2.467052000
6	1.088377000	1.242956000	-1.366660000
1	0.922848000	0.645294000	-2.273272000
1	0.285665000	1.986382000	-1.278185000
1	2.069824000	1.736977000	-1.422481000
6	-0.490320000	-1.043391000	0.384781000
8	-0.134163000	-2.012065000	1.035184000
8	-1.611370000	-0.708030000	-0.096663000
13	-2.405262000	0.985838000	-0.487767000
1	-2.239025000	1.149085000	-2.085559000
1	-3.880002000	0.903243000	0.130064000
1	-1.356388000	1.946213000	0.321716000

$\underline{PMe_{3}CO_{2}AlCl_{3}(2)}(C_{s})$

E = -	3.659032		
Nim	nag=0		
15	-0.946314000	1.322650000	0.000000000
6	0.424202000	-0.056519000	0.000000000
8	-0.142040000	-1.136422000	0.000000000
8	1.663948000	0.223481000	0.000000000
13	2.912215000	1.565786000	0.000000000
17	2.476395000	2.691212000	-1.793602000
17	2.476395000	2.691212000	1.793602000
17	4.814910000	0.636732000	0.000000000
6	-0.554620000	3.095002000	0.000000000
6	-1.933323000	0.944718000	-1.480057000
6	-1.933323000	0.944718000	1.480057000
1	0.043986000	3.337414000	-0.889407000
1	0.043986000	3.337414000	0.889407000
1	-1.496878000	3.662723000	0.000000000
1	-2.863225000	1.529565000	-1.475906000
1	-1.346809000	1.197015000	-2.374299000
1	-2.158455000	-0.128968000	-1.483669000
1	-2.863225000	1.529565000	1.475906000
1	-1.346809000	1.197015000	2.374299000

1 -2.158455000 -0.128968000 1.483669000

$\underline{PMe_{3}CO_{2}BH_{3}\left(3\right)}\left(C_{1}\right)$

E = -	-3.311025		
Nin	nag=1; 33.6i		
6	0.903932000	0.120765000	0.052532000
7	2.011548000	0.873289000	0.079913000
6	3.134894000	0.076081000	0.000220000
6	2.688042000	-1.214530000	-0.078408000
7	1.310362000	-1.152876000	-0.044113000
1	1.947234000	1.887376000	0.150280000
1	4.139513000	0.475165000	0.005432000
1	3.232335000	-2.145704000	-0.154569000
1	0.633752000	-1.913780000	-0.084970000
6	-0.518590000	0.636240000	0.114790000
8	-1.339407000	-0.344451000	0.063860000
8	-0.648411000	1.854304000	0.199039000
13	-3.275526000	-0.462310000	0.029249000
1	-3.732182000	0.134742000	1.458726000
1	-3.385523000	-2.072015000	-0.119542000
1	-3.690857000	0.391426000	-1.277549000

$\underline{\mathbf{NHCCO}_{2}\mathbf{AlH}_{3}\left(4\right)}\left(C_{1}\right)$

E= -	3.423262		
Nim	ag=1; 9.9i		
6	2.329926000	0.205848000	-0.087109000
7	3.618613000	0.471663000	0.184104000
6	4.319156000	-0.698783000	0.349129000
6	3.415181000	-1.712708000	0.167799000
7	2.200973000	-1.126688000	-0.099280000
1	3.946917000	1.434539000	0.236770000
1	5.375710000	-0.722349000	0.577082000
1	3.543235000	-2.785921000	0.208112000
1	1.283129000	-1.610112000	-0.313208000
6	1.326094000	1.312461000	-0.320929000
8	0.105277000	0.945737000	-0.523409000
8	1.795059000	2.442783000	-0.320911000
13	-1.212028000	-0.175049000	0.015810000
17	-1.080563000	-0.245518000	2.148931000
17	-0.591461000	-2.145944000	-0.788336000
17	-3.043907000	0.444277000	-0.841083000

$\underline{NHCCO_2AlCl_3(5)}(C_1)$

E= -3.675377 Nimag=0

13	0.884687000	0.199307000	-0.042807000
6	2.383880000	-0.857388000	-0.003352000
1	2.352246000	-1.572349000	-0.833171000
1	3.288781000	-0.237889000	-0.068047000
1	2.399180000	-1.431785000	0.932440000
6	1.133959000	1.311945000	1.393278000
1	2.191443000	1.611966000	1.435424000
1	0.478081000	2.185125000	1.316257000
1	0.875790000	0.762243000	2.309538000
6	1.056897000	1.117254000	-1.618400000
1	0.949745000	0.400200000	-2.445323000
1	0.278670000	1.883989000	-1.701592000
1	2.057185000	1.572278000	-1.665679000
6	-0.507522000	-1.223555000	-0.067557000
8	-0.066453000	-2.328315000	-0.316575000
8	-1.697945000	-0.828007000	0.163457000
5	-2.048188000	0.671299000	0.331767000
1	-1.023861000	1.279339000	-0.009631000
1	-2.939583000	0.935262000	-0.444474000
1	-2.306920000	0.887087000	1.497089000

0 1002 (7000

$\underline{\text{NHCCO}_2\text{BH}_3(6)}(C_s)$

0.004607000

15

7087000	1.497089000	1	1.755939000
		1	1.756968000
		1	2.571087000
		1	-2.027679000
		1	-2.675509000
		1	-2.027741000
897000	0.000000000		
686000	0.000000000		

0.042007000

_____<u>___</u>_

E= -3.420604
NT O

Nin	nag=0		
6	0.849571000	0.059897000	0.000000000
7	1.919329000	0.867686000	0.000000000
6	3.082924000	0.124331000	0.000000000
6	2.702671000	-1.188942000	0.000000000
7	1.322117000	-1.196667000	0.000000000
1	1.798824000	1.879224000	0.000000000
1	4.066044000	0.573405000	0.000000000
1	3.294483000	-2.093883000	0.000000000
1	0.686755000	-1.991933000	0.000000000
6	-0.578657000	0.527918000	0.000000000
8	-1.358221000	-0.496764000	0.000000000
8	-0.760098000	1.743257000	0.000000000
5	-2.947986000	-0.384802000	0.000000000
1	-3.257080000	0.232725000	1.005919000
1	-3.311480000	-1.544231000	0.000000000
1	-3.257080000	0.232725000	-1.005919000

<u>HCOOH (7)</u> (C_s)

E= -1.059665

Nimag=0

	B		
1	1.028100000	-1.097000000	0.000000000
8	1.143800000	-0.122900000	0.000000000
8	-1.133400000	-0.213000000	0.000000000
6	-0.102200000	0.414200000	0.000000000
1	-0.023700000	1.517000000	0.000000000

<u>CH₃COOH (8)</u> (C_s)

E= -1.643108

$\underline{CH_3COOC_2H_5(10)}(C_1)$

<u>CH₃COOCH₃ (9)</u> (C₁)

-0.647394000

0.355893000

1.717890000

0.436983000

-1.925238000

E= -2.200574 Nimag=1; 14.8i

8 8

6

6

6

E=	-2.890096						
Nimag=1; 34.7i							
8	-0.198304000	0.505703000	-0.069730000				
8	1.066906000	-1.327844000	0.386309000				
6	2.151342000	0.763738000	-0.190943000				
6	0.982740000	-0.157181000	0.070896000				
6	-1.392398000	-0.283231000	0.203022000				
1	2.332748000	1.371525000	0.706835000				
1	1.940568000	1.449373000	-1.019490000				
1	3.044096000	0.167076000	-0.397689000				
1	-1.382652000	-1.167327000	-0.447963000				
1	-1.346607000	-0.635990000	1.242294000				
6	-2.596327000	0.601960000	-0.047589000				
1	-2.623413000	0.945875000	-1.089869000				
1	-3.516898000	0.037015000	0.152563000				
1	-2.583311000	1.482151000	0.608514000				

$\underline{C_{2}H_{5}COOC_{3}H_{7}(11)}(C_{1})$

E=	-4.086787						
Nimag=0							
8	0.151851000	-0.513247000	-0.043557000				
8	-1.137623000	1.342377000	-0.302625000				
6	-2.192916000	-0.841828000	-0.081425000				
6	-1.038222000	0.140203000	-0.153274000				
6	1.339914000	0.319911000	-0.139567000				

Nir	nag=0		
1	-0.967100000	-1.591500000	0.000000000
8	-0.033800000	-1.296000000	0.000000000
8	-1.129800000	0.686700000	0.000000000
6	-0.082900000	0.073200000	0.000000000
6	1.300300000	0.670300000	0.000000000
1	1.854400000	0.327400000	-0.883900000
1	1.228000000	1.760400000	0.000000000
1	1.854400000	0.327400000	0.883900000

0.718427000

-1.320118000

0.690904000

-0.108378000

0.043693000

1.342390000

1.340199000

0.007974000

-0.585927000

0.838657000

-0.586220000

0.000043000

-0.000057000

 $\begin{array}{c} -0.000077000 \\ 0.000003000 \end{array}$

-0.000110000

0.883096000

-0.884828000

0.001167000

-0.892024000

-0.000006000

0.891592000

1	-1.983677000	-1.559486000	0.724763000
1	-2.165115000	-1.430157000	-1.013008000
1	1.394736000	0.737967000	-1.155595000
1	1.241509000	1.161286000	0.560122000
6	2.545654000	-0.546989000	0.180548000
1	2.566702000	-1.403065000	-0.510262000
1	2.425949000	-0.960237000	1.193244000
6	-3.549818000	-0.163686000	0.095100000
1	-3.596319000	0.384649000	1.044802000
1	-3.735236000	0.557339000	-0.709892000
1	-4.354729000	-0.909934000	0.089237000
6	3.854511000	0.244163000	0.082744000
1	4.013246000	0.632438000	-0.933940000
1	3.856434000	1.102890000	0.770590000
1	4.715555000	-0.387779000	0.335931000

Table S4: Important geometrical parameters of the optimized geometries and the corresponding crystal structures of CO_2 adduct of Lewis acid-base pair (**A**) and carboxylic acids and esters (**B**). Bond lengths are given in angstroms and angles in degrees. Mean Absloute Deviation (MAD) of the bond lengths are also given.^a

Compound	Me ₃ PCO ₂ AlH ₃	Me ₃ PCO ₂ AlCl ₃	$tBu_3PCO_2Al[OC(CF_3)_3]_3^{5h}$		$(\mathbf{D}_{\mathbf{H}}, \mathbf{D}_{\mathbf{C}}, \mathbf{O}, \mathbf{A})$		
-	(1)	(2)			$tBU_3PCO_2AI(C_6F_5)_3$		
P–C	1.971	1.944	1.889		1.883		
C-01	1.220	1.219		1.188	1.211		
CO2	1.265	1.271		1.299	1.288		
O2–Al	1.911	1.833		1.790	1.826		
O1-C-O2	132.2	130.4		128.9	126.1		
MAD	0.059	0.031					
Compound	Me ₃ PCO ₂ BH ₃	$Me_{3}PCO_{2}B(C_{6}F_{5})_{3}^{5c}$		NHCCO ₂ BH ₃	$R_{2}^{1}-NHCCO_{2}B(C_{6}F_{5})_{3}^{5i}$		
_	(3)			(6)	$(\mathbf{R}^1 = t - \mathbf{B}\mathbf{u})$		
P–C	1.991	1.893	C–C	1.503	1.516		
C01	1.215	1.208	C01	1.229	1.202		
CO2	1.276	1.299	C02	1.287	1.297		
O2–B	1.549	1.547	O2–B	1.594	1.535		
01-C-02	131.1	127.6	O1-C-O2	134.2	130.1		
MAD	0.032			0.027			
Compound	$HCO_2H(7)^b$		CH ₃ CO ₂ H(8) ^c				
	Optimized structure	Crystal structure		Optimized Structure	Crystal structure		
C-01	1.207	1.188	C–C	1.507	1.502		
С-О2	1.357	1.375	C01	1.213	1.206		
01–C–O2	125.4	125.6	CO2	1.370	1.320		
			01–C–O2	122.4	121.9		
MAD	0.018			0.020			
Compound	CH ₃ CO ₂ CH ₃ (9) ^d						
	Optimized structure	Crystal structure					
C–C	1.510	1.492					
C-01	1.213	1.200					
CO2	1.364	1.337					
CH3CO2O2-	1.446	1.453					
01–C–O2	123.5	122.5					
MAD	0.016						

^aThe model compounds **1**, **2**, **3** and **6** show compartively high value of MAD which is attributed to the bulky substituents on P, Al, B and N-atoms in NHC in their crystal structures as compared to less bulky substituents in the model compounds.

^b A. Albinati Acta Cryst., 1978, **B34**, 2188.

^c P. G. Jonsson *Acta Cryst.*, 1971, **B27**, 893. ^d M. J. Barrow, S. Cradock, E. A. V. Ebsworth and D. W. H. Rankin *J. Chem. Soc.*, *Dalton Trans.*, 1981, 1988.

	CH ₃ COOC ₂ H ₅ (10)				C ₂ H ₅ COOC ₃ H ₇ (11)			
	CH3C—O _{CO2C2H5}	$_{CH3}C \rightarrow O^{+}_{CO2C2H5}$	_{CH3CO2} O—C _{C2H5}	$_{\rm CH3CO2}O \rightarrow C^+_{\rm C2H5}$	C2H5C—O _{CO2C3H7}	$_{C2H5}C \rightarrow O^{+}_{CO2C3H7}$	_{C2H5CO2} O—C _{C3H7}	$_{C2H5CO2}O \rightarrow C^{+}_{C3H7}$
ΔE_{int}	-104.9	-321.4	-105.0	-243.9	-101.7	-321.9	-121.3	-237.0
$\Delta \mathrm{E}_{\mathrm{Pauli}}$	267.4	416.3	309.8	232.2	284.6	428.6	343.0	241.6
a a	-161.4	-374.8	-153.9	-248.8	-172.6	-378.8	-167.5	-244.9
ΔE_{elstat}	(43.4%)	(50.8%)	(37.1%)	(52.3%)	(44.7%)	(50.5%)	(36.1%)	(51.2%)
a a	-210.8	-362.9	-260.9	-227.3	-213.7	-371.7	-296.8	-233.7
ΔE_{orb}	(56.6%)	(49.2%)	(62.9%)	(47.7%)	(55.3%)	(49.5%)	(63.9%)	(48.8%)
b	-185.0	-303.0	-232.5	-182.2	-186.7	-311.3	-270.5	-185.8
ΔE_{σ}	(87.8%)	(83.5%)	(89.1%)	(80.2%)	(87.4%)	(83.8%)	(91.1%)	(79.5%)
b,c	-9.8	-16.2	-12.1	-15.5	-9.9	-16.1	-13.1	-15.0
ΔE_{π}	(4.6%)	(4.5%)	(4.6%)	(6.8%)	(4.6%)	(4.3%)	(4.4%)	(6.4%)
b,d	16.0	43.7	16.3	-29.6	17.1	44.3	-13.2	-32.9
ΔE_{rest}	(7.6%)	(12.0%)	(6.2%)	(13.0%)	(8.0%)	(11.9%)	(4.4%)	(14.1%)
ΔE_{prep}	12.9	229.4	24.8	163.7	13.6	233.8	40.8	156.5
$\Delta E_{(-D_e)}$	-92.0	-92.0	-80.2	-80.2	-88.1	-88.1	-80.5	-80.5
$\Delta E_{orb} / \Delta E_{elstat}$	1.31	0.97	1.69	0.91	1.23	0.98	1.77	0.95

Table S5: EDA-NOCV results for CH₃COOC₂H₅ (10) and C₂H₅COOC₃H₇ (11) at the BP86/TZ2P level of theory using ADF 2013.01 package. Energies are in kcal/mol

^{*a*}Values in parenthesis give the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb}$ ^{*b*}Values in parenthesis give the percentage contribution to orbital interaction ΔE_{orb}

 $^{c}\Delta E_{rest} = \Delta E_{orb} - (\Delta E_{\sigma} + \Delta E_{\pi})$

Table S6: Description of different bonding patterns depicted in Scheme 2.

Here, we have explored the possibility of both electron sharing as well as donor-acceptor type bonding of CO_2 group with other fragments in **1-9** (Scheme 2). The appropriate formal charges are assigned to the corresponding fragments to maintain the correct electronic configuration. The bond formed between the LB and C-atom of CO₂LA can be of two types. The first possibility is the donor- acceptor interaction from the lone pair of LB to the empty orbital of the CO₂LA fragment (similar to the LUMO, 4a₁ of bent CO₂, Figure 2), which is represented as LB \rightarrow C_{CO2LA} in schemes 2a, c. The second possibility is the electron sharing ylidic-type interaction, which is represented as $LB^+-C^-_{CO2LA}$ in schemes 2b, d. The electronic state of the fragments involved in these schemes are formed by the transfer of one electron from the lone pair of LB to the empty orbital of CO₂LA (similar to the electronic state ${}^{2}A_{1}$ of bent CO_2^- , Figure 2), which results the formally positively charged LB⁺ and the negatively charged CO_2LA^- fragments.¹⁶ In either way, once LB is bonded to the in-plane LUMO of bent $CO_2(4a_1)$, the in-plane π -MOs can reorganize as in-plane lone pair orbital on each O-atom. The O-atom can donate the lone pair to the empty orbital on LA, which is represented in schemes 2a, b. There may be another possibility that one electron from the lone pair on the O-atom (similar to 3b₂, Figure 2) can be transferred to the vacant orbital on LA, which results LA^- and $LBCO_2^+$ fragments having unpaired electrons. The interaction of LBCO₂⁺ and LA⁻ fragments results an ylidic type electron shairing $_{LBCO2}O^+$ –LA⁻ bond as shown in schemes 2c,d.

The bent CO₂ fragment should be in the excited electronic state $({}^{3}B_{2}, 1a_{2}{}^{2}3b_{2}{}^{1}4a_{1}{}^{1}$; Figure 2), where one electron from the HOMO (3b₂) is excited to the in-plane LUMO (4a₁), to form electron sharing R–C_{CO2R'} and _{RCO2}O–R' bonds as depicted in scheme 2h. The transfer of an electron from the singly occupied in-plane orbital on the CO₂R' fragment (similar to 4a₁ of triplet

bent CO₂; Figure 2) to the singly occupied orbital of the R group results the formally negatively charged R⁻ and the positively charged CO₂R^{*i*+} fragments, which can form donor-acceptor type R⁻ \rightarrow C⁺_{CO2R'} bond as shown in scheme 2g. On the other hand, transfer of an electron from the singly occupied in-plane orbital of the R' group to the singly occupied orbital of the RCO₂ fragment (similar to 3b₂ of triplet bent CO₂; Figure 2) results in the formally negatively charged RCO₂⁻ and the positively charged R'⁺ fragment, which can form donor-acceptor type _{RCO2}O⁻ \rightarrow R⁺ bond as shown in scheme 2f. If the electron transfer from the CO₂R' fragment to R group and R' to CO₂R fragment happen at the same time, two donor-acceptor type R⁻ \rightarrow C⁺_{CO2R'} and _{RCO2}O⁻ \rightarrow R'⁺ bonds would result as represented in scheme 2e.¹⁶