Electronic Supplementary Information (ESI)

RSC Advances

Ormosil nanoparticles as a sustained-release drug delivery vehicle.

Indrajit Roy ^a*, Pramod Kumar ^a, Rajiv Kumar ^b, Tymish Y. Ohulchanskyy ^b, Ken-Tye Yong ^c,

and Paras N Prasad b*

^a Department of Chemistry, University of Delhi, Delhi-110007, India. Email: <u>indrajitroy11@gmail.com</u>; Tel: +91-9560721851.

^b Department of Chemistry and the Institute for Lasers, photonics and Biophotonics, State University of New York at Buffalo, Buffalo, NY-14226. Email: pnprasad@buffalo.edu; Tel: (716) 645-4147.

^c School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.

Enclosure: Two figures

	Zeta Potential	
	Without Dox	With Dox
ORM-S	-18.5 mV	- 9.7 mV
ORM-M	-16.3 mV	- 10.3 mV
ORM-L	-16.8 mV	- 8.9 mV

Fig. S1: Table showing surface charge (zeta potential) of ORM-S, ORM-M and ORM-L nanoparticles, without and with Dox encapsulation.

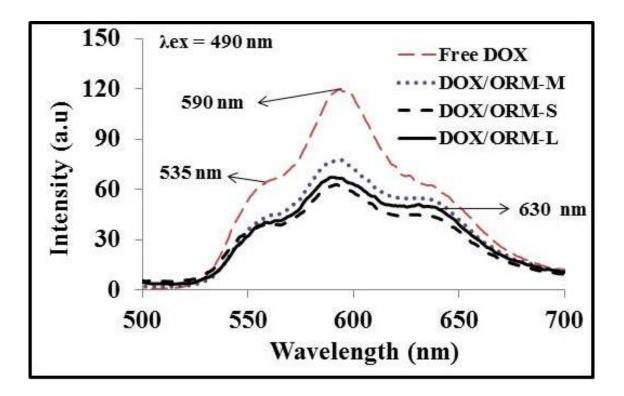


Fig. S2: Fluorescence spectra of free Dox, and Dox encapsulated in small (Dox/ORM-S), medium (Dox/ORM-M) and large (Dox/ORM-L) ormosil nanoparticles.