Supplementary Information for;

Synthesis and Blue Phosphorescent Device Performances of a New Bipolar Host Material Containing Pyrazino[2,3-b]indole Moiety

Hong-Gu Jang, Sang Kyu Jeon, Jun Yeob Lee, and Seok-Ho Hwang*

Seok-Ho Hwang, Ph.D.
Department of Polymer Science and Engineering,
Dankook University
Yongin, Gyeonggi 448-701,
Republic of Korea
E-mail: bach@dankook.ac.kr

General Procedure:

Chemicals were commercially purchased and used without further purification. Thin layer chromatography (TLC) was conducted on flexible sheets precoated SiO_{2} (Baker-flex; IB2-F) and visualized by UV light. Column chromatography was conducted by using silica gel (60200 mesh; Fisher Scientific Co.). Melting point was determined on melting point apparatus (MEL-TEMP; model 1102D). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Gemini 300 NMR spectrometer using CDCl_{3}, as the solvent, except where noted. Mass spectra were obtained on GC/mass spectrometer (Jeol Co.; AccuTOF GCv 4G). Photophysical properties were analyzed by using UV/vis spectrometer (Scinco Co.; S-3100) and photoluminescence (PL) spectrometer (Hitachi High Technologies; F-7000). The host material was dissolved in THF at a concentration of $c a .1 .0 \times 10^{-4} \mathrm{M}$ for UV/vis and PL measurements. Triplet energy of the host material was calculated from low temperature PL spectrum measured in the liquid nitrogen (77 K) condition. Cyclic voltammetry measurement was conducted by using potentiostat (SP-50; Bio-Logic Science Instruments) in electrolyte solution, which is $\mathrm{CH}_{3} \mathrm{CN}$ with tetrabutylammonium perchlorate at 0.1 M concentration. Ag was used as the reference electrode and Pt was the counter electrode. The host material was coated on indium-tin-oxide substrate and immersed in the electrolyte solution for measurement. Ferrocene was used as the internal standard material. Glass transition temperature was measured by using a differential scanning calorimeter (Melter-Toledo; DSC 820e) at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ under nitrogen atmosphere.

Synthesis:

Acetyl-1H-3-indolyle trifluoromethanesulfonate (1). Lithium diisopropylamide (2M solution in THF, $18.75 \mathrm{~mL}, 37.5 \mathrm{mmol}$) was added to a $-78{ }^{\circ} \mathrm{C}$ solution of 1 -acetyl- 1 H -indol$3(2 H)$-one ($3.25 \mathrm{~g}, 18.55 \mathrm{mmol}$) in THF (150 mL) under nitrogen atmosphere. The mixture was stirred for 20 min at $-78{ }^{\circ} \mathrm{C}$ and N -phenyl-bis(trifluoromethanesulfonimide) (20.00 g , 55.98 mmol) in THF (100 mL) was added. The mixture was stirred for 16 hrs at room temperature. The solvent was evaporated; water $(150 \mathrm{~mL})$, and ethyl acetate $(150 \mathrm{~mL})$ were added. After neutralization with $10 \% \mathrm{HCl}$, the aqueous layer was extracted with ethyl acetate $(3 \times 150 \mathrm{~mL})$; the organic layer was dried over anhydrous MgSO_{4}. After removing the solvent by evaporator, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with a mixture of ethyl acetate:petroleum ether (1:9; v/v) to give a solid (4.38 g, 77\%); m.p. $=$ $68-70{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.65(\mathrm{~s}, 3 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.59(\mathrm{~m}, 1 \mathrm{H}), 8.44$ (d, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 23.8,115.2,116.8,117.1,118.7,122.2,124.6,127.1,133.1,133.3,168.2$.
$\mathbf{5 H}$-Pyrazino[2,3-b]indole (2). Ethylenediamine ($1.29 \mathrm{~g}, 29.29 \mathrm{mmlol}$) and triflate $\mathbf{1}$ (3.00 $\mathrm{g}, 9.76 \mathrm{mmol})$ were dissolved in DMF $(100 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.56 \mathrm{~g}, 0.49 \mathrm{mmol})$ were added. The solution was heated and stirred at $65^{\circ} \mathrm{C}$ for 1 hr . Water $(100 \mathrm{~mL})$ was added and the solution was neutralized and extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The organic layer was dried over anhydrous MgSO_{4}. After removing the solvent by evaporator, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with a mixture of ethyl acetate:petroleum ether (3:7; v/v) to give a solid ($1.15 \mathrm{~g}, 70 \%$); m.p. $=243-246^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 7.28-$
$7.34(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 2 \mathrm{H}), 8.20(\mathrm{~d}, 1 \mathrm{H}), 8.40(\mathrm{~d}, 1 \mathrm{H}), 8.48(\mathrm{~d}, 1 \mathrm{H}), 12.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 113.7,120.9,122.1,122.6,130.6,136.8,138.1,141.6,141.8,147.1 ;$ MS (GC-MS/EI): m/z = $169.14\left[\mathrm{M}^{+}\right]$(calcd. $\mathrm{m} / \mathrm{z}=169.06$).

9-(3-bromophenyl)-9H-carbazole (3). Carbazole (10g, 59.85mmol), 1,3dibromobenzene ($14 \mathrm{~g}, 60.00 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(24 \mathrm{~g}, 179.55 \mathrm{mmol}), \mathrm{CuI}(5.71 \mathrm{~g}, 29.93 \mathrm{mmol})$ and 18-crown-6 $(0.8 \mathrm{~g}, 2.99 \mathrm{mmol})$ were dissolved in DMF (180 ml) under nitrogen atmosphere. The reaction mixture was stirred for 24 hrs at $130^{\circ} \mathrm{C}$. The mixture was extracted to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with water and brine. The combined organic mixture was dried over anhydrous MgSO_{4} and filtrated. The crude material was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with n-hexane to give a white solid $(9.0 \mathrm{~g}, 47 \%)$: m.p. $64-65{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.17$ $(\mathrm{d}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 140.73,139.30,131.27,130.68,130.33,126.28,125.90,123.70,123.37,120.54$, 120.50, 109.77.

5-(3-(9H-carbazol-9-yl)phenyl)-5H-pyrazino[2,3-b]indole (CzPhPZ; 4). 5HPyrazino $2,3-b]$ indole ($1 \mathrm{~g}, 5.91 \mathrm{mmol}$), 9-(3-bromophenyl)-9H-carbazole ($2.28 \mathrm{~g}, 7.10 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.30 \mathrm{~g}, 23.88 \mathrm{mmol}), \mathrm{CuI}(0.60 \mathrm{~g}, 3.00 \mathrm{mmol})$ and 18 -crown- $6(0.08 \mathrm{~g}, 0.30 \mathrm{~mol})$ were dissolved in DMF (30 ml) under nitrogen atmosphere. The reaction mixture was reflux for 24 hrs . The mixture was extracted to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with water three times and brine. The combined organic mixture was dried over anhydrous MgSO_{4} and filtrated. The crude material was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with a mixture of n hexane:ethyl acetate ($3: 1 ; \mathrm{v} / \mathrm{v}$) to give a yellow solid ($0.8 \mathrm{~g} \mathrm{33} \mathrm{\%}$): m.p. $187-188{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ $8.61(\mathrm{~d}, 1 \mathrm{H}), 8.48-8.30(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~d}, 2 \mathrm{H}), 7.98-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.83-$ $7.79(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, 3 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 141.12,140.70,140.06,139.30$, 138.17, 137.01, 136.92, 131.13, 129.74, 126.30, $126.14,125.52,125.46,123.80,122.33,122.06,120.56,120.51,120.43,110.86,110.03 ; \mathrm{MS}$ (GC-MS/EI): m/z = $410.30\left[\mathrm{M}^{+}\right]$(calcd. $\mathrm{m} / \mathrm{z}=410.15$).

Fabrication of PHOLED device and measurements

The device structure of blue PHOLEDs was indium tin oxide (150 nm)/ poly($3,4-$ ethylenedioxythiophene):poly(styrenesulfonate) (60 nm)/ Tris(4-carbazoyl-9-ylphenyl)amine $(20 \mathrm{~nm}) / \quad N, N^{\prime}$-dicarbazolyl-3,5-benzene $\quad(10 \mathrm{~nm}) /$ New Host: Bis[2-(4,6-difluorophenyl)pyridinato- $\left.{ }^{2}, N\right]$ (picolinato)iridium(III) (FIrpic) (25 nm, x wt. $-\%$)/4(triphenylsilyl) phenyldiphenylphosphine oxide (5 nm)/1,3,5-Tris(1-phenyl-1 H -benzimidazol-2-yl)benzene $(30 \mathrm{~nm}) / \mathrm{LiF}(1 \mathrm{~nm}) / \mathrm{Al}(200 \mathrm{~nm})$. The electrical characteristics of the blue PHOLEDs were analyzed with Keithley 2400 source measurement unit. Lightemitting performances were characterized with CS1000 spectroradiometer.

Figure S1. ${ }^{1} \mathrm{H}$ NMR (A) and ${ }^{13} \mathrm{C}$ NMR (B) spectra of $\mathbf{C z P h P z}$.

Figure S2. GC-Mass spectra of $\mathbf{C z P h P z}$.

Figure S3. HOMO and LUMO distribution of 9H-carbazole and 5H-Pyrazino[2,3-b]indole.

Figure S4. UV/vis and solution PL spectra of $9 H$-carbazole and $5 H$-Pyrazino[2,3-b]indole. (emission was excited at 330 nm).

Figure S5. DSC thermograms of $\mathbf{C z P h P z}$.

Figure S6. Room-temperature absorption and PL spectra of $\mathbf{C z P h P z}$ in various organic solvents (excited at 340 nm). (A) Absorption spectra for $\mathbf{C z P h P z}$; (B) PL spectra for $\mathbf{C z P h P z}$.

Figure S7. The plot of emission peak frequencies of $\mathbf{C z P h P z}$ solutions as a function of solvent polarities. Δf is the solvent polarity parameter function and is generally expressed as $\Delta f=(\varepsilon-1) /(2 \varepsilon+1)$, where ε denotes the static dielectric constant of the solvent.

Figure S8. Schematic illustration of CIE color coordinate for $\mathbf{C z P h P z}$-based PHOLED.

Figure S9. Photo image of the operating CzPhPz-based PHOLED.

Table S1. Molecular simulation results of $9 H$-carbazole and $5 H$-Pyrazino[2,3-b]indole.

Sample name	HOMO (eV)	LUMO (eV)	Bandgap (eV)	Triplet energy (eV)	$\mathbf{P L}_{\text {max }}$ (nm)
Carbazole	-5.44	-0.64	4.80	3.19	361
Pyrazino indole	-6.00	-1.52	4.48	2.97	408

Table S2. Light-emitting characteristics of $\mathbf{C z P h P z}$ at different FIrpic concentration.

Doping Concentration of FIrpic $(\mathbf{w t . - \%})$	Color coordinate $\left(\mathrm{CIE}_{x, y}\right)$	$\mathrm{EL}_{\max }$ (nm)
$\mathbf{5}$	$(0.17,0.35)$	473
$\mathbf{1 0}$	$(0.17,0.36)$	473
$\mathbf{2 0}$	$(0.17,0.36)$	473
$\mathbf{3 0}$	$(0.17,0.37)$	474

