## Supporting Information

Assembly of MnO<sub>2</sub> nanowires@reduced graphene oxide hybrid with interconnected structure for high performance lithium ion battery

Zhangpeng Li<sup>ab</sup>, Jinqing Wang\*<sup>a</sup>, Zhaofeng Wang<sup>a</sup>, Yongbing Tang<sup>b</sup>, Chun-Sing Lee\*<sup>b</sup>, Shengrong Yang<sup>a</sup>

- <sup>a</sup> State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- <sup>b</sup> Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China

Corresponding authors. Tel.: +86-931-4968076 (J. Wang); +852-34427826 (C. Lee) E-mail addresses: jqwang@licp.cas.cn (J. Wang); apcslee@cityu.edu.hk (C. Lee)

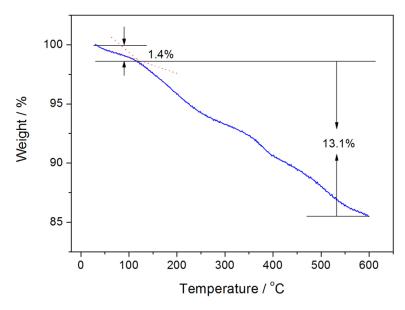



Fig. S1. TG curve of the MGH.

Thermogravimetric analysis (TGA, Q50) was adopted to determine the amount of MnO<sub>2</sub> in the hybrid, from room temperature to 600 °C in air at a heating rate of 10 °C min<sup>-1</sup>. Fig. S1 shows the TG curve of the MGH. From 30 °C to 110 °C, the hybrid shows a slight weight loss of 1.4%, which can be attributed to the removal of adsorbed water. From 110 °C to 600 °C, another 13.1% weight loss is observed, which corresponds to the loss of rGO.