Supplementary Information

Synthesis of yolk/shell Fe₃O₄@poly(ionic liquid)s-derived nitrogen doped graphitic

porous carbon materials and its application as support for nickel catalysts

Mohammad Reza Nabid*, Yasamin Bide, Zahra Habibi

Faculty of Chemistry, Department of Polymer, Shahid Beheshti University, G.C., P.O. Box 1983963113

Tehran, Iran

Email: m-nabid@sbu.ac.ir

Fig. S1 FT-IR spectra of Fe_3O_4 , and Fe_3O_4 @SiO₂

Fig. S2 XRD patterns of Fe₃O₄@SiO₂(A), and Fe₃O₄@SiO₂@PCMVImCl (B)

Fig. S3 Pore size distribution plot obtained from the adsorption branch of the isotherm for YS Fe_3O_4 @PILd-(N)GPC.

Entry	Amount of catalyst (Ni(0) content/mol %)	Solvent	Isolated Yield (%)
1	1	DMSO	80
2	1	MeOH	77
3	1	EtOH	83
4	1	H_2O	90
6	1.2	H ₂ O	92
7	0.8	H_2O	81
10	0	H_2O	-

Table S1 Influence of solvent, and the amount of catalyst on reduction reaction of 4-nitrotoluene.^a

^a Reaction conditions: 1 mmol 4-nitrotoluene, 0.5 mmol NaBH₄, 5 mL solvent, NiNPs@YS Fe₃O₄@PIL-d-(N)GPC as catalyst.

Fig. S4 ¹H NMR spectrum of p-toluidine in DMSO-*d*₆.

Fig. S5 ¹H NMR spectrum of 4-methoxyaniline in CDCl₃.

Fig. S6 ¹H NMR spectrum of naphthalen-1-amine in CDCl₃.

Fig. S7 ¹H NMR spectrum of 4-fluoroaniline in CDCl₃.

Fig. S8 ¹H NMR spectrum of 3-iodoaniline in CDCl₃.

Fig. S9 ¹H NMR spectrum of 4-bromoaniline in CDCl₃.

Fig. S10 ¹H NMR spectrum of ethanamine in DMSO- d_6 .

Fig. S11 ¹H NMR spectrum of phenylmethanamine in CDCl₃.

Fig. S12 ¹H NMR spectrum of pyridin-2-ylmethanamine in CDCl₃.

Fig. S13 ¹H NMR spectrum of 2-methylpropan-1-amine in CDCl₃.

Fig. S14 ¹H NMR spectrum of 3-Cyanomethyl-1-vinylimidazolium chloride in DMSO-d₆.