## **Supplementary Information**

# Development of regioselective deacylation of peracetylated $\beta$ -D-monosaccharides using lipase from *Pseudomonas stutzeri* under sustainable conditions.

M. Sandoval,<sup>a</sup> P. Hoyos<sup>a</sup>, T. A. Cortés,<sup>b</sup> Bavaro,<sup>c</sup> M. Terreni<sup>c</sup> and M. J. Hernáiz<sup>a</sup>\*

<sup>*a*</sup> Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Campus de Moncloa, 30100 Madrid, Spain.

Fax: (+34) 9139 41822

e-mail: mjhernai@ucm.es

<sup>b</sup> Unidad de Bioinformática. Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC, Universidad Autónoma de Madrid (UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain.

<sup>c</sup> Italian Biocatalysis Center, Drug Science department, University of Pavia, via Taramelli 12; 27100 Pavia (Italy).

#### **Table of contents**

| 1. | General information                                             | S1         |
|----|-----------------------------------------------------------------|------------|
| 2. | Typical procedure for the hydrolysis of peracetylated sugars    | S2         |
| 3. | Physicochemical features of the solvents used in this study     | S3         |
| 4. | Hydrolysis of peracetylated substrates using P. stuzeri lipase  | S3         |
| 5. | Alcoholysis of peracetylated substrates using P. stuzeri lipase | S4         |
| 6. | NMR spectra of the obtained compounds                           | S5         |
| 7. | References                                                      | <b>S</b> 8 |

#### 1. General information

Peracetylated monosaccharides and disaccharides, solvents (ethanol, tetrahydrofuran THF- and 2methyltetrahydrofuran –2-MeTHF-) were purchased from Sigma Aldrich. Solvent **S1**, was a gift from COGNIS IP Management GmbH now part of BASF. Solvents **S2**, **S3**, **S4**, **S5**, **S6** and **S7** were a generous gift from Prof. Ignacio García,<sup>26</sup> (Universidad de Navarra, Spain; solvents features are shown in Table S2 see supplementary information) Commercially available lipases from *Pseudomonas stutzeri* (PSL) and *Alcaligenes sp*. (QLC) were purchased from Meyto Sangyo (Japan). CAL-B was purchased from Sigma Aldrich. HPLC Jasco with evaporative light scattering detector (ELSD) using NH<sub>2</sub>P50-4E amino column (Asahipak, Japan) eluted at 0.8 mL/min, 80% acetonitrile and 20% water was used. NMR spectra were recorded in CDCl<sub>3</sub> ( $\delta$ =ppm) on a Bruker AV. 250 MHz and a Bruker AV. 400 MHz Spectrometer. Chemical shifts ( $\delta$ ) are reported in parts per million (ppm) relative to CDCl<sub>3</sub> (<sup>1</sup>H:  $\delta$  7.27 ppm) and CDCl<sub>3</sub> (<sup>13</sup>C:  $\delta$  77.0 ppm). Structures assignment were performed by means of 2D-COSY (COrrelation SpectroscopY), HSQC (Heteronuclear Single Quantum Correlation) experiments and HMBC (Heteronuclear Multiple Bond Correlation).

### 2. Typical procedure for the hydrolysis of peracetylated sugars

15.0 mg of the peracetylated sugar were solved in 500  $\mu$ L of solvent containing 50  $\mu$ L of distilled water. The reaction was started by the addition of the lipase (see Table S1) and the reaction progress was monitorized by HPLC. Products were purified by column chromatography using dichloromethane:methanol (95:5) as eluent. Solvent was dried and purified products were analysed by <sup>1</sup>H-NMR and <sup>13</sup>C-NMR.

**Table S1.** Deacylation of 1,2,3,4,6-penta-O-acetyl- $\beta$ -D-galactopyranose catalized by several lipases under different solvents conditions.

| Assay | Enzyme | Solvent    | Yield 1a |
|-------|--------|------------|----------|
|       |        |            | (%)      |
| 1     | CAL-B  | ethanol    | 8        |
| 2     | CAL-B  | <b>S1</b>  | 3        |
| 3     | CAL-B  | <b>S2</b>  | 3        |
| 4     | CAL-B  | <b>S3</b>  | 27       |
| 5     | CAL-B  | <b>S4</b>  | 1        |
| 6     | CAL-B  | THF        | 3        |
| 7     | CAL-B  | MeTHF      | 7        |
| 8     | PSL    | ethanol    | 58       |
| 9     | PSL    | <b>S1</b>  | 96       |
| 10    | PSL    | <b>S2</b>  | 76       |
| 11    | PSL    | <b>S3</b>  | 62       |
| 12    | PSL    | <b>S4</b>  | 2        |
| 13    | PSL    | THF        | 15       |
| 14    | PSL    | MeTHF      | 25       |
| 15    | QLC    | ethanol    | 1        |
| 16    | QLC    | <b>S</b> 1 | 1        |
| 17    | QLC    | S2         | 1        |
| 18    | QLC    | S3         | 2        |
| 19    | QLC    | S4         | 3        |
| 20    | QLC    | THF        | 5        |
| 21    | QLC    | MeTHF      | 4        |

## 3. Physicochemical features of the solvents used in this study

Table S2. Physicochemical features of the solvents used in this study. S1-S3

| Solvent    | log P <sup>a</sup> | Density |
|------------|--------------------|---------|
| <b>S</b> 1 | 1.42               | 0.905   |
| S2         | 1.42               | 1.359   |
| <b>S3</b>  | 0.14               | 0.942   |
| <b>S4</b>  | 1.71               | 1.270   |
| <b>S5</b>  | -0.60              | 1.068   |
| <b>S6</b>  | 0.27               | 0.912   |
| <b>S7</b>  | 1.14               | 1.121   |

<sup>a</sup> Values obtained from literature <sup>S4-S6</sup>

## 4. Hydrolysis of peracetylated substrates using *P. stuzeri* lipase

15.0 mg of the peracetylated sugar were solved in 500  $\mu$ L of solvent containing 50  $\mu$ L of distilled water. The reaction was started by the addition of 10.0 mg of PSL. The mixture was shaked at 30 °C and the reaction progress was monitorized by HPLC. Products were purified by column chromatography using dichloromethane:methanol (95:5) as eluent. Solvent was dried and purified products were analysed by <sup>1</sup>H-NMR and <sup>13</sup>C-NMR.<sup>S7, S8</sup>

**2,3,4,6-Tetra-***O***-acetyl-***α*/**β-D-galactopyranose (1a):** colorless oil, 90 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 5.52 (bd, J = 3.4 Hz, 1H, H-1α-anomer), 5.48 (dd, 1H, J = 1.3 Hz), 5.41 (dd, 1H, J = 3.5 Hz), 5.18 (dd, 1H, J = 3.4 Hz), 4.48 (t, 1H, J = 6.7 Hz), 4.11-4.09 (m, 2H), 2.10 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ (ppm): 171.5, 171.3, 171.2, 171.0, 96.9 (C-1 β-anomer), 91.0 (C-1 α-anomer), 71.9, 71.3, 69.2, 68.1, 62.7, 21.9, 21.7, 21.6, 21.5. Anal. Calcd. for C<sub>14</sub>H<sub>20</sub>O<sub>10</sub>: C, 48.28 %; H, 5.79 %; found: C, 48.09; H, 5.80. [α]<sup>20</sup><sub>D</sub>: +54.6 (c 1.98, CHCl<sub>3</sub>).

**2,3,4,6-Tetra-***O***-acetyl-** $\alpha$ / $\beta$ **-D-glucopyranose (2a):** colorless oil, 93 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 5.54 (t, J = 9.7 Hz, 1H), 5.46 (d, 1H, J = 3.5 Hz , H-1  $\alpha$ -anomer), 5.09 (t, 1H, J = 9.8 Hz), 4.91 (q, 1H, J = 3.0 Hz), 4.74 (d, 1H, J = 8.5 Hz ,  $\beta$ -anomer), 4.29-4.12 (m, 3H), 2.10 (s, 3H), 2.09

(s, 3H), 2.04 (s, 3H), 2.02 (s, 3H).. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ (ppm): 171.8, 171.7, 171.1, 170.6, 96.4 (C-1 β-anomer), 91.0 (C-1 α-anomer), 72.0, 70.8, 69.4, 68.1, 62.9, 21.6, 21.5. Anal. Calcd. for  $C_{14}H_{20}O_{10}$ : C, 48.28 %; H, 5.79 %; found: C, 48.12; H, 5.81. [α]<sup>20</sup><sub>D</sub>: +46.9 (c 2.49, CHCl<sub>3</sub>).

**2-Acetamido-3,4,6-tri-***O***-acetyl-2-deoxy-***α*/**β-D-glucopyranose (4a):** colorless oil, 65 % yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 6.00 (d, *J* = 9.5 Hz, 1H, NH), 5.33-5.26 (m, 2H), 5.14 (t, 1H, *J* = 9.4 Hz), 4.65 (d, 1H, *J* = 8.5 Hz, H-1 β-anomer), 4.32-4.27 (m, 1H), 4.23-4.20 (m, 2H), 4.16-4.10 (m, 1H), 2.11 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ (ppm): 172.42, 171.93, 171.47, 170.39, 92.48, 71.89, 69.18, 68.46, 63.04, 53.26, 24.09, 21.07, 21.58 . Anal. Calcd. for C<sub>14</sub>H<sub>21</sub>NO<sub>9</sub>: C, 48.41 %; H, 6.09 %; N, 4.03; found: C, 48.29; H, 6.10; N, 4.04.

#### 5. Alcoholysis of peracetylated substrates using *P. stuzeri* lipase

15.0 mg of substrate (1 $\beta$  or 1 $\alpha$ ) were dissolved in 500  $\mu$ L of dry alcohol (1-butanol, S2, S3, S5, S6 and S7). 10.0 mg of PSL and molecular sieves (50.0 mg) were added to the mixture and the reactions were shaked at 30 °C during 48 h. Alcoholysis reactions were monitorized by HPLC. After complete reaction, products were purified by column chromatography using dichloromethane:methanol (95:5) as eluent. Solvent was evaporated and purified products were analysed by <sup>1</sup>H-NMR and <sup>13</sup>C-NMR, NMR spectra were similar to those reported above and were concordant with literature.<sup>S7, S8</sup>

## 6. NMR spectra of the obtained compounds

# 2,3,4,6-Tetra-*O*-acetyl-α/β-D-galactopyranose (1a):



# 2,3,4,6-Tetra-*O*-acetyl-α/β-D-glucopyranose (2a):



# 2-Acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-α/β-D-glucopyranose (4a):



#### References

- S1. H. R. Hobbs and N. R. Thomas, Chem. Rev., 2007, 107, 2786.
- S2. R. A. Sheldon, Green Chem., 2005, 7, 267.
- S3. X. Tao, Curr. Opin. Chem. Biol., 2009, 13, 1
- S4. M. Pérez-Sánchez, M. Sandoval, A. Cortés-Cabrera, H. García-Marín, J. V. Sinisterra, J. I. García,
- M. J. Hernaiz, Green Chem., 2011, 13, 2810
- S5. M. Pérez-Sánchez, M. Sandoval, M. J. Hernáiz, Tetrahedron 2012, 68, 2141
- S6. J. I. García, H. García-Marín, J. A. Mayoral, P. Pérez, Green Chem. 2010, 12, 426-434.
- S7. M. Filice, R. Fernandez-Lafuente, M. Terreni, J. M. Guisan and J. M. Palomo, J. Mol. Cat. B: Enz, 2007, 49, 12
- S8. T. B. Cai, D. Lu, X. Tang, Y. Zhang, M. Landerholm and P. G. Wang, J. Org. Chem., 2005, 70, 3518.