Synthesis and encapsulation of amphiphilic thermoresponsive star polymer

with β -cyclodextrin and hyperbranched poly (oligo (ethylene glycol)

methacrylate) as building blocks

Yinwen Li^{a, b}, Huilong Guo^{a, b}, Jian Zheng^{a, b}, Jianqun Gan^{a, b}, Yan Zhang^{a, b}, Xiaoxiao

Guan ^{a, b}, Kun Wu ^a, Mangeng Lu ^{a,*}

a Key Laboratory of Cellulose and Lignocellulosics Chemistry, Chinese Academy of

Sciences; Key Laboratory of Polymer Materials for Electronics, Guangzhou institute of

Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China.

b University of Chinese Academy of Sciences, Beijing 100039, PR China

Fig. S1. MALDI-TOF spectrum of PE-CD.

Fig. S2. MALDI-TOF spectrum of PE-CD-Br₁₆.

Fig. S3. MALDI-TOF spectrum of PE-CD-Br₄₈.

Fig. S4. Fluorescence excitation and emission spectra of RB, LL, Rh and CR in aqueous

solution.

Fig. S5. Fluorescence emission spectra of RB, and CR solutions at pH= 7.4 in the presence of different P_2 concentrations, separately.

Fig. S6. Fluorescence emission spectra of LL, Rh, RB, and CR solutions at pH=7.4 in the presence of different P_1 concentrations, separately.

Figure. S7. Fluorescence emission spectra of RB+Rh at pH =7.4 in the presence of different P_2 concentrations.

Figure. S8. Fluorescence emission spectra of $CR + P_2$ solutions with gradual adding of Rh

solutions at pH = 7.4, respectively.

Figure. S9. Fluorescence emission spectra of $CR+LL+P_2$ solutions with gradual adding of Rh solutions at pH = 7.4, respectively.