

Supporting information

Synthesis of α -Amino Squaric Acid-containing Peptide on Solid Phase

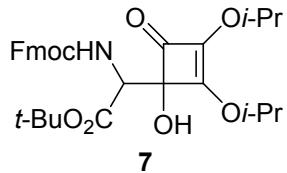
Kentaro Maeda,¹ Yu-ichi Kiniwa,¹ Yasufumi Ohfune,¹ Shinichi Ishiguro,² and Koichi Suzuki,²

Kazuya Murata,³ Hideaki Matsuda,³ and Tetsuro Shinada ^{1*}

^a Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

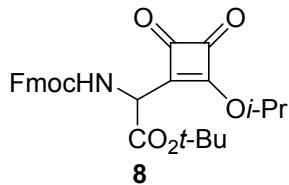
^b Office of Research Exchange, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan

^c Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan


General Information:

All reagents and solvents were purchased from either Aldrich Chemical Company, Inc., Merck & Co., Inc., Nacalai Tesque Company, Ltd., Peptide Institute, Tokyo Kasei Kogyo Co., Ltd., Wako Pure Chemical Industries, Ltd., or Watanabe Chemical Industries, Ltd. and used without further purification unless otherwise indicated. Dichloromethane (CH_2Cl_2) was distilled from phosphoric pentoxide (P_2O_5). Tetrahydrofuran (THF), Acetonitrile (CH_3CN) and dimethylformamide (DMF) of anhydrous grade were used.

Optical rotations were taken on a JASCO P-1030 polarimeter with a sodium lamp (D line). FTIR spectra was measured on a JASCO FT/IR-6200 infrared spectrophotometer. ^1H NMR spectra were reported on an either Bruker AVANCE-300 or JEOL JNM-LA 400 (400 MHz) spectrometer. Chemical shifts of ^1H NMR were reported as δ values in ppm relative to CHCl_3 (δ = 7.26) in CDCl_3 , CD_2HOD (δ = 3.31) in CD_3OD , HDO (δ = 4.79) in D_2O . Chemical shifts of ^{13}C NMR spectra were reported as δ values in ppm relative to CHCl_3 (δ = 77.0) in CDCl_3 , CH_3OH (δ = 49.0) in CD_3OD . Low resolution mass spectra (LRMS) and High resolution mass spectra (HRMS) were obtained on an JEOL JMS-AX500 for fast atom bombardment ionization (FAB) or Bruker solariX XR (9.4T) for electrospray ionization (ESI). Mass spectra of peptide library were obtained on a KRATOS AXIMA-CFRplus (SHIMAZU) for matrix assisted laser desorption/ionization (MALDI).

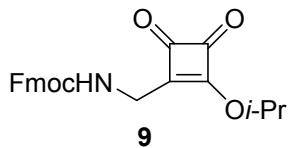

All reactions were monitored by thin layer chromatography (TLC), which was performed with precoated plates (silica gel 60 F-254, 0.25 mm layer thickness, manufactured by Merck). TLC visualization was accompanied using UV lamp (254 nm), ninhydrin solution (TCI N-094) or phosphomolybdic acid solution (10 g dissolved in 150 mL of EtOH). Daisogel IR-60 1002W(40/63 mm) was used for flash column chromatography on silica gel. Reversed phase chromatography was performed on Cosmosil® 140C₁₈-PREP.

tert-Butyl 2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-(1-hydroxy-2,3-diisopropoxy-4-oxocyclobut-2-en-1-yl)acetate (7)

To a solution of **5** (6.40 g, 13.8 mmol) in MeOH (28 mL) was added 20% Pd-C (1.28 g) at room temperature. The mixture was stirred under H₂ for 3 h at room temperature, filtrated through and a celite pad. The filtrate was concentrated *in vacuo* to give amine **6** (4.59 g). The amine was subjected to the next step without purification. FmocOSu (4.65 g, 13.8 mmol) was added to a solution of **6** (4.59 g) in CH₃CN (16 ml) at room temperature. The mixture was stirred for 4 h and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10/1-1/1) to give **7** (6.19 g, 81% from **5**), a 1:2 inseparable mixture as yellow oil: FTIR (neat) 3409, 2979, 2935, 1770, 1729, 1621, 1515, 1452, 1386, 1375, 1321, 1218, 1157, 1099, 1056 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 7.2 Hz, 2H), 7.61 (d, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 2H), 5.83 (br d, 2/3H), 5.68 (br d, 1/3H), 4.94-4.81 (m, 2H), 4.72 (m, 1H), 4.37 (d, *J* = 6.9 Hz, 2H), 4.22 (d, *J* = 7.2 Hz, 1H), 1.51 (s, 3H), 1.49 (s, 6H), 1.39-1.23 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 182.1, 181.5, 168.2, 163.6, 163.4, 156.4, 143.7, 141.2, 133.1, 132.7, 127.7, 127.0, 125.2, 119.9, 86.7, 85.7, 84.0, 83.4, 73.9, 67.6, 57.8, 47.0, 27.8, 22.7, 22.4, 22.2; HRMS (FAB) *m/z* (M+H)⁺ calcd for [C₃₁H₃₇NO₈+H]⁺ 552.2592, found 552.2598.

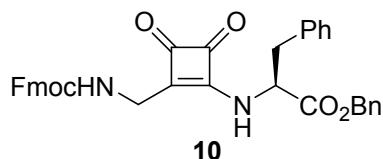
tert-Butyl 2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-(2-isopropoxy-3,4-dioxocyclobut-1-en-1-yl)acetate (8)

To a solution of **7** (702 mg, 1.27 mmol) in CH_2Cl_2 (10 mL) was added 12*N* HCl (0.083 mL) at room temperature. The mixture was stirred for 3 h, quenched with NaHCO_3 , and filtrated through a celite pad. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10/1-1/1) to give **8** (499 mg, 80%) as yellow oil:


FTIR (neat) 3345, 2983, 2937, 1799, 1727, 1596, 1511, 1450, 1390, 1322, 1249, 1151, 1095, 1052 cm^{-1} ;

^1H NMR (300 MHz, CDCl_3) δ 7.76 (d, J = 7.2 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.40 (t, J = 7.2 Hz, 2H), 7.31 (t, J = 7.2 Hz, 2H), 6.06 (d, J = 7.2 Hz, 1H), 5.52-4.40 (m, 2H), 4.37-4.31 (m, 2H), 4.25 (t, J = 7.2 Hz, 1H), 1.48 (s, 9H), 1.46-1.42 (m, 6H);

^{13}C NMR (75 MHz, CDCl_3) δ 196.5, 193.5, 191.4, 174.5, 165.1, 155.4, 143.6, 141.2, 127.7, 127.1, 125.1, 119.9, 84.7, 80.3, 67.6, 51.4, 46.9, 27.8, 22.7, 22.6;


HRMS (FAB) m/z (M+H)⁺ calcd for $[\text{C}_{28}\text{H}_{29}\text{NO}_7+\text{H}]^+$ 492.2017, found 492.2014.

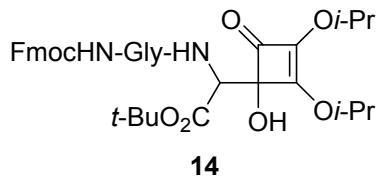
(9H-Fluoren-9-yl)methyl ((2-isopropoxy-3,4-dioxocyclobut-1-en-1-yl)methyl)carbamate (9)
[FmocHN-[Sq-Gly]-O*i*-Pr]

To a solution of **8** (290 mg, 0.589 mmol) in CH_2Cl_2 (6 mL) was added TFA (1.4 mL) at 0 °C. The mixture was stirred for 10 min at 0 °C, warmed to room temperature, and stirred for 12 h. The mixture was quenched with sat. NaHCO_3 (10 mL) and extracted with EtOAc (5 mL x 3). The combined organic layers were washed with brine (10 mL), dried over MgSO_4 , and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/ EtOAc = 10/1-1/1) to give **9** (175 mg, 76%) as yellow oil:
 FTIR (neat) 3347, 3066, 3018, 2985, 2938, 1795, 1751, 1714, 1590, 1517, 1450, 1400, 1324, 1243, 1143, 1093, 1049, 1004, cm^{-1} ;
 ^1H NMR (300 MHz, CDCl_3) δ 7.76 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 5.46 (br s, 1H), 5.39 (sept, J = 6.3 Hz, 1H), 4.52-4.39 (m, 4H), 4.23 (t, J = 6.6 Hz, 1H), 1.43 (d, J = 6.3 Hz, 6H);
 ^{13}C NMR (75 MHz, CDCl_3) δ 196.7, 193.3, 193.0, 177.7, 156.2, 143.6, 141.2, 127.7, 127.0, 125.0, 119.9, 80.0, 67.2, 47.0, 36.5, 22.6;
 HRMS (FAB) m/z (M+H)⁺ calcd for $[\text{C}_{23}\text{H}_{21}\text{NO}_5+\text{H}]^+$ 392.1492, found 392.1488.

FmocHN-[Sq-Gly]-(L)-Phe-OBn (10)

To a solution of **9** (25.0 mg, 0.064 mmol) in THF (0.5 mL) was added a solution of H₂N-(L)-Phe-OBn (49.0 mg, 0.192 mmol) in THF (0.5 mL) at room temperature. The mixture was stirred for 3 h and washed with 4*N* HCl (3 mL). The organic layer was washed with sat.NaHCO₃ (5 mL) and brine (5 mL), dried over MgSO₄, and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10/1-1/1) to give **10** (27.0 mg, 71%) as pale yellow amorphous solid.

$[\alpha]^{24.8}_D$ -4.0° (c 0.95, CHCl₃);


FTIR (neat) 3318, 3029, 2952, 1787, 1739, 1700, 1606, 1517, 1450, 1334, 1251, 1216, 1178, 1106, 1079, 1052, 1002 cm⁻¹;

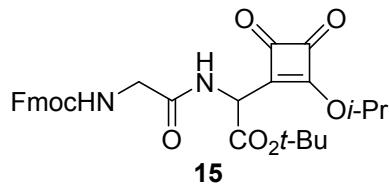
¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, *J* = 8.7 Hz, 1H), 7.78 (d, *J* = 7.2 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 2H), 7.41 (t, *J* = 7.2 Hz, 2H), 7.35-7.00 (m, 12H), 5.89 (br s, 1H), 5.22- 5.12 (m, 3H), 4.42 (dd, *J* = 9.6, 6.0 Hz, 1H), 4.28-4.15 (m, 2H), 4.12 (d, *J* = 6.0 Hz, 2H), 3.23 (dd, *J* = 13.8, 5.4 Hz, 1H), 3.05 (dd, *J* = 13.8, 78.1 Hz, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 192.7, 190.0, 183.8, 169.9, 166.3, 158.3, 143.6, 143.4, 141.2, 134.6, 134.4, 129.3, 128.6, 128.4, 127.8, 127.3, 127.0, 125.1, 124.9, 120.0, 67.7, 67.6, 57.5, 46.8, 39.7, 33.3;

HRMS (FAB) *m/z* (M+H)⁺ calcd for [C₃₆H₃₀N₂O₆+H]⁺ 587.2177, found 587.2177.

tert-Butyl 2-(2-((2-((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-oxoethyl)hydrazinyl-2,3-diisopropoxy-4-oxocyclobut-2-en-1-yl)acetate (14)

To a solution of **5** (12.4 g, 26.8 mmol) in MeOH (55 mL) was added 10% Pd-C (2.48 g) at room temperature. The mixture was stirred under H₂ for 3 h at room temperature and filtrated through a celite pad. The filtrate was concentrated *in vacuo* to give **6** (9.0 g). The amine **6** was subjected to the next step without purification. FmocHN-Gly-OH (8.1 g, 27.3 mmol), EDCI (5.26 g, 27.4 mmol) was successively added to a solution of **6** (9.0 g) in THF (78 ml) at 0 °C. The mixture was stirred for 10 min at 0 °C, warmed to room temperature, and stirred for 3 h. The mixture was quenched with sat. NH₄Cl and extracted with EtOAc (20 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 5/1-1/3) to give **14** (16.0 g, 98% (2 steps from **5**), an inseparable 2:1 mixture of diastereomers) as yellow amorphous solid:


FTIR (neat) 3338, 2981, 2937, 1769, 1727, 1615, 1520, 1450, 1386, 1373, 1320, 1249, 1157, 1097, 1048, 997, 960, 938, 909, 843, 759, 735 cm⁻¹;

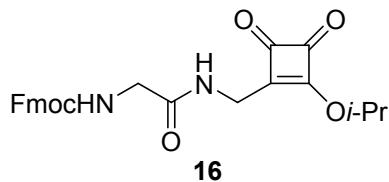
¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, *J* = 7.4 Hz, 2H), 7.59 (br d, 2H, *J* = 7.4 Hz), 7.36 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 2H), 7.19 (br s, 1H), 6.10 (br s, 2/3H), 6.00 (br s, 1/3H), 5.02 (d, *J* = 8.7 Hz, 2/3H), 4.95 (d, *J* = 8.1 Hz, 1/3H), 4.91-4.75 (m, 2H), 4.35 (d, *J* = 7.2 Hz, 2H), 4.22 (t, *J* = 7.2 Hz, 1H), 4.12-3.91 (m, 2H), 1.51-1.15 (m, 21H);

¹³C NMR (75 MHz, CDCl₃) δ 182.8, 182.3, 170.0, 169.7, 167.6, 167.5, 164.7, 164.6, 156.7, 156.5, 143.8, 143.7, 141.1, 132.2, 127.5, 127.0, 125.1, 119.7, 85.5, 85.4, 83.2, 83.1, 77.5, 67.3, 56.9, 56.4, 46.9, 44.3, 27.7, 22.6, 22.4, 22.1;

HRMS (FAB) *m/z* (M+H)⁺ calcd for [C₃₃H₄₀N₂O₉+H]⁺ 609.2807, found 609.2823.

tert-Butyl 2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)acetamido)-2-(2-isopropoxy-3,4-dioxocyclobut-1-en-1-yl)acetate (15)

To a solution of **14** (1.40 g, 2.30 mmol) in CH_2Cl_2 (22 mL) was added 12 *N* HCl (0.18 mL) at room temperature. The mixture was stirred for 3 h, quenched with NaHCO_3 , and filtrated through a celite pad. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 5/1-1/3) to give **15** (876 mg, 70%) as yellow amorphous solid:

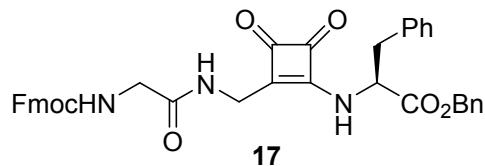

FTIR (neat) 3342, 2981, 1797, 1733, 1682, 1594, 1519, 1450, 1392, 1326, 1251, 1150, 1093, 1047, 910, 761, 734 cm^{-1} ;

^1H NMR (300 MHz, CDCl_3) δ 7.76 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.22 (br s, 1H), 5.58 (d, J = 6.9 Hz, 1H), 5.53 (br s, 1H), 5.46 (sept, J = 6.0 Hz, 1H), 4.43 (d, J = 6.6 Hz, 2H), 4.24 (t, J = 6.6 Hz, 1H), 4.00 (br s, 1H), 1.49-1.44 (m, 15H);

^{13}C NMR (75 MHz, CDCl_3) δ 196.5, 193.3, 191.6, 173.7, 169.2, 164.7, 156.5, 143.7, 141.1, 127.5, 126.9, 125.0, 119.8, 84.6, 80.4, 67.2, 49.9, 46.9, 44.0, 27.7, 22.6, 22.5;

HRMS (FAB) m/z (M+H) $^+$ calcd for $[\text{C}_{30}\text{H}_{32}\text{N}_2\text{O}_8+\text{H}]^+$ 549.2231, found 549.2234.

FmocHN-Gly-[Sq-Gly]-O*i*-Pr (16)


To a solution of **15** (1.40 g, 2.55 mmol) in CH₂Cl₂ (26 mL) was added TFA (6 mL) at 0 °C. The mixture was stirred for 10 min at 0 °C, warmed to room temperature, and stirred for 12 h. The mixture was quenched with *sat.* NaHCO₃ and extracted with EtOAc (15 mL x 3). The combined organic layers were washed with brine, and dried over MgSO₄, and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3/1-1/6) to give **16** (780 mg, 69%) as yellow amorphous solid: FTIR (neat) 3628, 3338, 2987, 1796, 1748, 1670, 1587, 1449, 1404, 1322, 1251, 1201, 1136, 1093, 1049, 990, 899, 800 cm⁻¹;

¹H NMR (300 MHz, CD₃OD) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 5.33 (sept, *J* = 6.0 Hz, 1H), 4.40-4.25 (m, 4H), 4.20 (t, *J* = 6.9 Hz, 1H), 3.82 (s, 2H), 1.41 (d, *J* = 6.0 Hz, 6H);

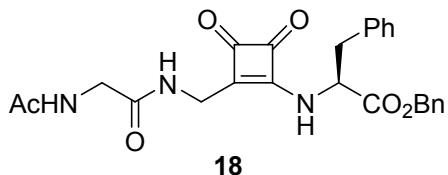
¹³C NMR (100 MHz, CD₃OD) δ 198.4, 195.5, 194.3, 178.9, 172.8, 158.9, 145.2, 142.6, 128.9, 128.3, 126.3, 121.1, 81.4, 68.2, 48.3, 44.9, 35.5, 23.0;

HRMS (FAB) *m/z* (M+H)⁺ calcd for [C₂₅H₂₄N₂O₆+H]⁺ 449.1707, found 449.1709

FmocHN-Gly-[Sq-Gly]-(L)-Phe-OBn (17)

To a solution of **16** (50.7 mg, 0.113 mmol) in THF (0.5 mL) was added a solution of H_2N -(L)-Phe-OBn (86 mg, 0.339 mmol) in THF (0.5 mL) at room temperature. The mixture was stirred for 3 h and quenched with 4*N* HCl (3 mL). The organic layer was washed with sat.NaHCO₃ and brine (15 mL), dried over MgSO₄, and filtered. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10/1-1/9) to give **17** (47.0 mg, 64%) as yellow amorphous solid:

$[\alpha]^{30.0}_D$ -23.8 ° (c 1.3, MeOH);


FTIR (neat) 3734, 3709, 3628, 3566, 3289, 1786, 1733, 1607, 1540, 1455, 1244, 1166 cm⁻¹;

¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 7.2 Hz, 2H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.41-7.00 (m, 15H), 5.68 (br s, 1H), 5.19-5.10 (m, 3H), 4.45 (d, *J* = 6.3 Hz, 2H), 4.19 (t, *J* = 6.3 Hz, 1H), 4.12 (br s, 2H), 3.78 (br d, 2H), 3.25 (dd, *J* = 13.8, 5.1 Hz, 1H), 3.07 (dd, *J* = 13.8, 8.4 Hz, 1H);

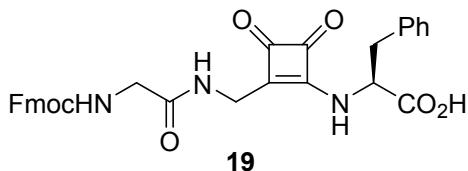
¹³C NMR (75 MHz, CDCl₃) δ 192.4, 190.1, 183.7, 171.8, 170.0, 166.0, 156.7, 143.7, 143.6, 141.3, 134.8, 134.7, 129.4, 128.6, 128.5, 127.7, 127.3, 127.0, 124.9, 120.0, 67.7, 67.0, 57.8, 47.1, 44.3, 39.4, 32.5;

HRMS (FAB) *m/z* (M+H)⁺ calcd for [C₃₈H₃₃N₃O₇+H]⁺, 644.2391, found 644.2398.

AcHN-Gly-[Sq-Gly]-(L)-Phe-OBn (18)

To a solution of **17** (34.0 mg, 0.053 mmol) was added 20% Et₂NH/THF (1 mL) at room temperature. The mixture was stirred for 30 min and concentrated *in vacuo*. To the residue was added acetic anhydride (1 mL) at room temperature and stirred for 1 h and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 1/1 and EtOAc/MeOH = 40/1) to give **18** (17.5 mg, 72%) as yellow oil:

$[\alpha]^{30.0}_D$ -31.9 ° (*c* 1.36, MeOH);


FTIR (neat) 3733, 3628, 3595, 3301, 2980, 2934, 1741, 1653, 1616, 1455, 1271, 1213, 1105, 1050, 753 cm⁻¹;

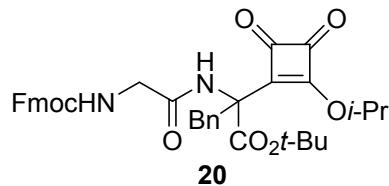
¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 9.0 Hz, 1H), 7.66 (t, *J* = 5.7 Hz, 1H), 7.37-7.08 (m, 10H), 6.57 (t, *J* = 5.4 Hz, 1H), 5.24-5.08 (m, 3H), 4.19 (dd, *J* = 15.9, 5.7 Hz, 1H), 4.19 (dd, *J* = 15.9, 5.7 Hz, 1H), 3.91 (dd, *J* = 16.5, 5.4 Hz, 1H), 3.82 (dd, *J* = 16.5, 5.4 Hz, 1H), 3.28 (dd, *J* = 14.1, 5.1 Hz, 1H), 3.09 (dd, *J* = 14.1, 9.0 Hz, 1H), 2.00 (s, 3H);

¹³C NMR (75 MHz, CDCl₃) δ 192.4, 190.1, 183.7, 171.6, 171.3, 170.2, 166.1, 134.9, 134.7, 129.5, 128.7, 128.6, 128.5, 127.4, 67.8, 57.8, 43.2, 39.5, 32.6, 22.9;

HRMS (FAB) *m/z* (M-H)⁻ calcd for [C₂₅H₂₅N₃O₆-H]⁻, 462.1671, found 462.1660.

FmocHN-Gly-[Sq-Gly]-(L)-Phe-OH (19)

To a suspension of FmocHN-Phe-Wang resin (Watanabe Chemical Industries, Ltd., 0.67 mmol/resin(g), 68 mg, 0.046 mmol) in a small reaction tube with a membrane filter (LibraTube, HiPep Lab. Inc.) was added a solution of piperidine/DMF 1:4 (2 mL). The mixture was shaken with a vortex mixer for 1 min. The tube was equipped with a rotary shaker and mixing was continued for 15 min. The solution was removed by filtration and the resin was washed with DMF (2 mL x 3) and CH₂Cl₂ (2 mL x 2). To a suspension of the residual resin in AcOEt (2 mL), FmocHN-Gly-[Sq-Gly]-O*i*-Pr **16** (41 mg, 0.091 mmol) was added. The mixture was shaken with a vortex mixer for 1 min and subjected to mixing with a rotary shaker for 24 h. The mixture was filtrated. The residual resin was washed with DMF (2 mL x 3) and CH₂Cl₂ (2 mL x 2). This coupling procedure was repeated once again. The residual resin was moved to a test tube and treated with TFA (3 mL) for 3 h. The mixture was filtrated and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc (1% AcOH) = 2/1-0/1) to give **19** (20 mg, 80%, a 4:1 mixture of two rotamers) as white amorphous solid: [α]^{27.5}_D -13.0 ° (c 1.32, MeOH);


FTIR (neat) 3322, 3019, 2935, 1787, 1722, 1671, 1602, 1531, 1448, 1342, 1247, 1176, 1105, 1045, 993, 755, 701 cm⁻¹;

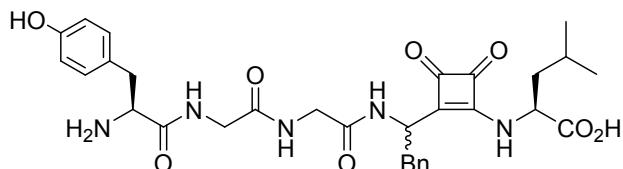
¹H NMR (300 MHz, CD₃OD) δ 7.78 (d, *J* = 7.2 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.34-7.12 (m, 7H), 5.05 (dd, *J* = 9.9, 4.2 Hz, 4/5H), 4.62 (dd, *J* = 9.6, 4.2 Hz, 1/5H), 4.40 (d, *J* = 6.9 Hz, 8/5H), 4.36 (d, *J* = 6.9 Hz, 2/5H), 4.27-3.95 (m, 3H), 3.90-3.64 (m, 2H), 3.36 (m, 1H), 3.08 (m, 1H);

¹³C NMR (75 MHz, CD₃OD) δ 193.4, 192.9, 192.3, 184.7, 173.3, 173.2, 172.4, 166.7, 164.3, 159.3, 145.2, 145.2, 142.6, 137.8, 137.6, 130.7, 130.5, 129.7, 129.6, 128.8, 128.2, 128.1, 126.2, 120.9, 68.2, 61.0, 59.6, 48.3, 45.0, 44.8, 39.9, 39.2, 34.6, 34.3;

HRMS (FAB) *m/z* (M-H)⁻ calcd for [C₃₁H₂₇N₃O₇-H]⁻ 552.1776, found 552.1777.

tert-Butyl 2-(2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)acetamido)-2-(2-isopropoxy-3,4-dioxocyclobut-1-en-1-yl)-3-phenylpropanoate (20)

To a solution of **15** (1.70 g, 3.10 mmol) in CH_2Cl_2 (30 mL) was added BnBr (2.95 mL, 24.8 mmol) and TBAI (9.15 g, 24.8 mmol) at room temperature. Et_3N (0.517 mL, 3.72 mmol) was added to the mixture. The mixture was stirred for 20 min and filtrated through a celite pad. The filtrate was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10/1-1/1) to give **23** (1.75 g, 90%) as pale yellow amorphous solid:


FTIR (neat) 3387, 3010, 2982, 2936, 1794, 1758, 1734, 1680, 1591, 1496, 1450, 1389, 1371, 1343, 1330, 1250, 1220, 1150, 1095, 1047, 1006 cm^{-1} ;

^1H NMR (400 MHz, CDCl_3) δ 7.77 (d, J = 7.6 Hz, 2H), 7.59 (dd, J = 7.6, 4.1 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.28-7.18 (m, 3H), 7.09 (d, J = 7.3 Hz, 2H), 6.98 (s, 1H), 5.50 (sept, J = 6.4 Hz, 1H), 5.40 (br s, 1H), 4.39 (m, 2H), 4.22 (t, J = 7.3 Hz, 1H), 3.93 (m, 2H), 3.90 (d, J = 13.9 Hz, 1H), 3.63 (d, J = 13.9 Hz, 1H), 1.50-1.44 (m, 12H), 1.43 (d, J = 6.4 Hz, 3H);

^{13}C NMR (100 MHz, CDCl_3) δ 195.7, 193.6, 191.1, 178.0, 168.3, 166.3, 156.3, 143.7, 141.2, 133.9, 130.0, 128.4, 127.7, 127.6, 127.0, 125.1, 119.9, 85.3, 80.3, 67.3, 63.3, 47.0, 44.3, 37.8, 27.8, 22.8, 22.7;

HRMS (FAB) m/z (M-H)⁻ calcd for $[\text{C}_{37}\text{H}_{38}\text{N}_2\text{O}_8\text{-H}]^-$ 637.2555, found 637.2565.

Solid phase synthesis of [Sq-Phe⁴] Enkephalin 21

21

To a suspension of FmocHN-Leu-Wang resin (Watanabe Chemical Industries, Ltd., 0.60 mmol/resin(g), 167 mg, 0.10 mmol) in a reaction tube with a membrane filter (LibraTube, HiPep Lab. Inc.) was added a solution of piperidine/DMF 1:4 (2 mL). The reaction tube was vigorously shaken by a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 15 min, the mixture was filtrated. The residual resin was washed with DMF (2 mL x 3) and CH₂Cl₂ (2 mL x 2). FmocHN-Gly-[Sq-Phe(CO₂t-Bu)]-O*i*-Pr (**20**) (255 mg, 0.40 mmol) and DIEA (35 μ L, 0.20 mmol) was added to a suspension of the residual resin in AcOEt (2 mL). The reaction tube was vigorously shaken with a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 60 h, the mixture was filtrated and washed with DMF (2 mL x 3) and CH₂Cl₂ (2 mL x 2). The subsequent removal of the Fmoc group was carried out using Et₂NH/DMF 1:4 (2 mL) (In the case of using piperidine/DMF, a byproduct which piperidine added to carbonyl group of α -Asq in desired peptide observed by MALDI-TOF MS analysis after cleavage reaction from the resin.). FmocHN-Gly-OH, HBTU, HOBr, and DIEA (0.4 mmol, 0.36 mmol, 0.4 mmol, and 0.8 mmol) were added to a suspension of the residual resin in DMF (2 mL). The reaction tube was shaken with a vortex mixer for 2 min and equipped with a rotary shaker. After mixing for 1.5 h, the mixture was filtrated. The residual resin was washed with DMF (2 mL x 3) and CH₂Cl₂ (2 mL x 2). According to the methods described above, the subsequent removal of the Fmoc group using Et₂NH/DMF 1:4 (2 mL) and coupling reaction of Fmoc-Tyr(*t*-Bu)-OH were carried out. After the removal of the Fmoc group, the residual resin was moved to a test tube and treated with TFA (3 mL) for 3 h. The mixture was filtrated and concentrated *in vacuo*. The crude mixture (36 mg) was purified by flash column chromatography on Cosmosil[®] (H₂O/MeOH = 2/1-1/1) and reverse-phase HPLC (Column : Nacalai Cosmosil 5C₁₈-MS-II, Column Size : 20 x 250 mm, solvent 33% MeCN (0.1% TFA)/H₂O (0.1% TFA), flow rate 6 mL/min, temperature : 25 °C, UV detection at 254 nm, sample conc : 36 mg/mL, injection volume 90 μ L) to give **21a** (7.5 mg ; retention time at 17.5 min) and **21b** (10 mg ; retention time at 20.9 min) as pale yellow sticky oil, respectively: HPLC profile is shown in the next page. NMR signals are multiple and broaden because of the presence of rotamers arising from the N-Sq bond (see attached spectral data of ¹H- and ¹³C-NMR (300 MHz, CD₃OD) of **21a** and **21b** in SI).

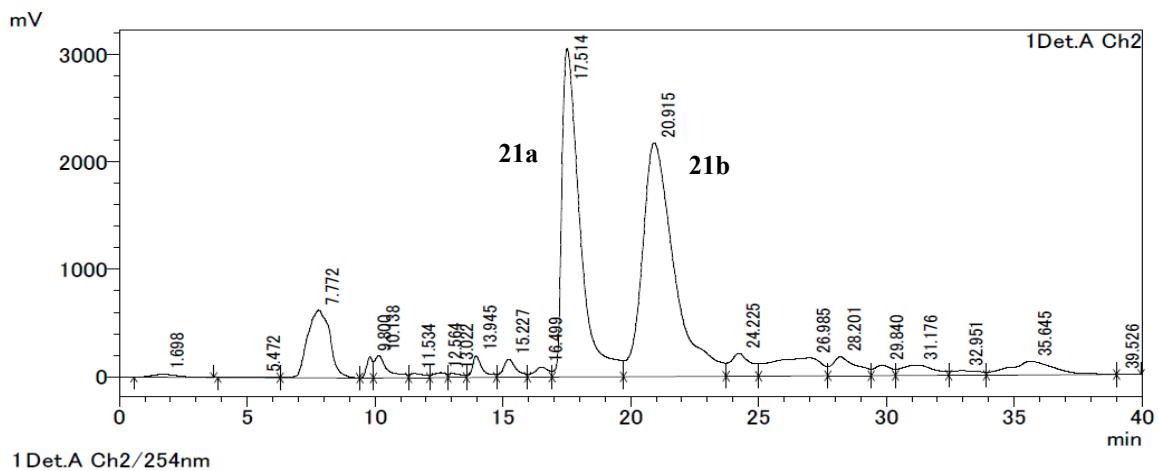
21a

$[\alpha]^{21.9}_D +9.7^\circ$ (*c* 0.65, MeOH);

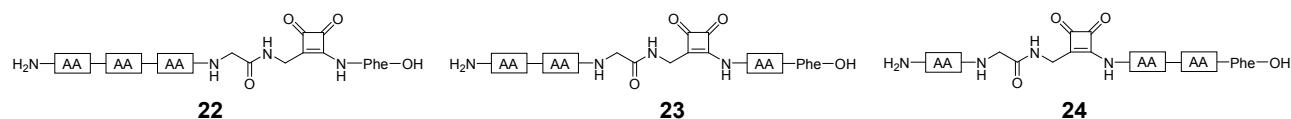
FTIR (neat) 2959, 1785, 1733, 1678, 1604, 1519, 1430, 1253, 1202, 1142, 1027 cm⁻¹;

HRMS (ESI) *m/z* (M+H)⁺calcd for [C₃₁H₃₇N₅O₈+H]⁺ 608.2715, found 608.2714.

HRMS (ESI) *m/z* (M+Na)⁺calcd for [C₃₁H₃₇N₅O₈+Na]⁺ 630.2534, found 630.2534.


21b

$[\alpha]^{22.4}_D +0.35^\circ$ (c 0.69, MeOH);


FTIR (neat) 2969, 1785, 1734, 1675, 1604, 1517, 1457, 1364, 1231, 1203, 1142, 1029 cm^{-1} ;

HRMS (ESI) m/z (M+H) $^+$ calcd for $[\text{C}_{31}\text{H}_{37}\text{N}_5\text{O}_8+\text{H}]^+$ 608.2715, found 608.2715.

HRMS (ESI) m/z (M+Na) $^+$ calcd for $[\text{C}_{31}\text{H}_{37}\text{N}_5\text{O}_8+\text{Na}]^+$ 630.2534, found 630.2533.

Solid phase synthesis of peptide libraries 22-24

Coupling reactions were performed by a series of sequential transformations.

22: (a), (b), (c), (d), (c), (d), (c), (d), (c), (e)

23: (a), (d), (a), (b), (c), (d), (c), (d), (c), (e)

24: (a), (d), (a), (d), (a), (b), (c), (d), (c), (e)

The solid phase synthesis of libraries **22-24** was performed in a small reaction tube with a membrane filter (LibraTube, HiPep Lab. Inc.) using FmocHN-Phe-Wang resin (Watanabe Chemical Industries, Ltd., 0.67 mmol/resin(g), 68 mg, 0.046 mmol).

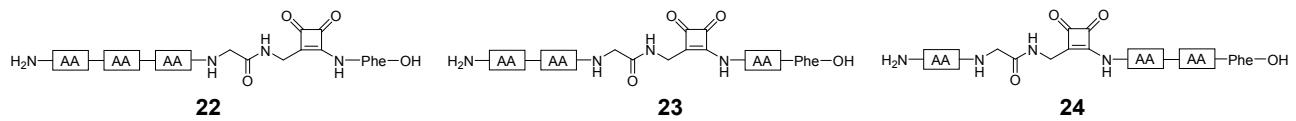
(a) Removal of the Fmoc group from peptides not containing the α -Asp

The resin was treated with piperidine/DMF 1:4 (2 mL). The reaction tube was shaken by a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 15 min. the mixture was filtrated. The residual resin was washed with DMF (2 mL x 3) and CH_2Cl_2 (2 mL x 2).

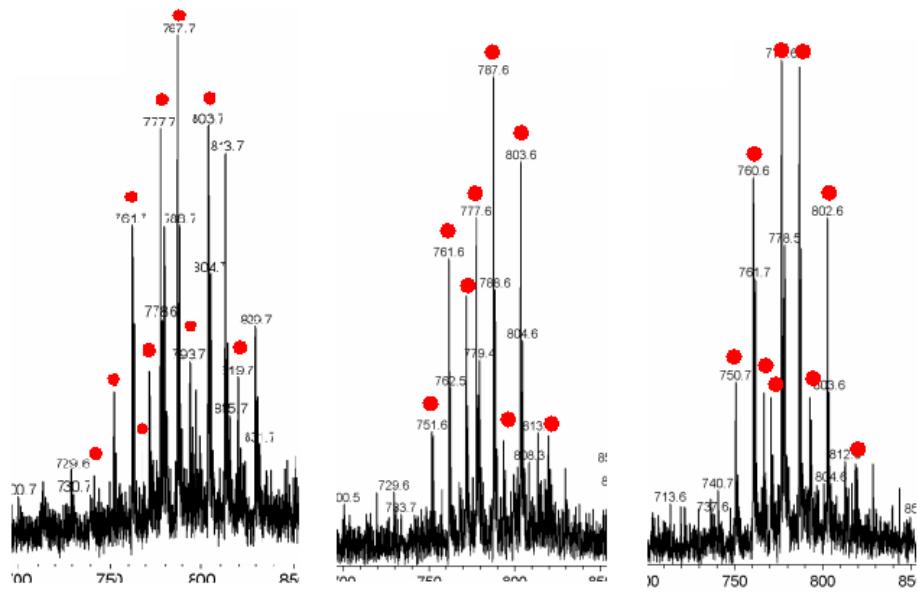
(b) Linkage of FmocHN-Gly-[Sq-Gly]-O*i*-Pr (**16**)

To a suspension of the NH₂ group-free peptide linked to the resin in AcOEt (2 mL) were added **16** (41 mg, 0.091 mmol). The reaction tube was shaken by a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 24 h, the mixture was filtered. The residual resin was washed with DMF (2 mL x 3) and CH₂Cl₂ (2 mL x 2). This procedure was repeated once again.

(c) Removal of the Fmoc group from peptides containing the α -Asp

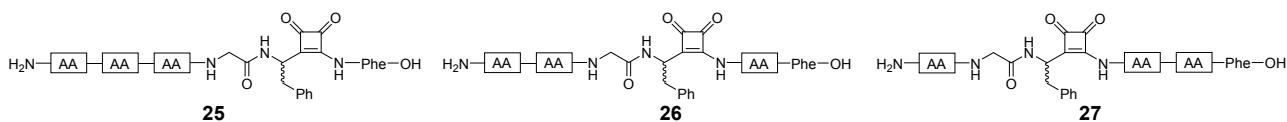

The resin was treated with Et₂NH/DMF 1:4 (2 mL). The reaction tube was shaken by a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 15 min, the mixture was filtrated. The residual resin was washed with DMF (2 mL x 3) and CH₂Cl₂ (2 mL x 2).

(d) Coupling reaction of Fmoc-amino acids


To a suspension of the residual resin in DMF (2 mL) were added a mixture of amino acids (FmocHN-Phe-OH/FmocHN-Tyr(*t*-Bu)-OH/FmocHN-His(Trt)-OH: 0.60 mmol each), HBTU (1.64 mmol), HOEt (1.82 mmol), and DIEA (3.64 mmol). The reaction tube was shaken by a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 1.5 h, the mixture was filtrated. The residual resin was washed with DMF (2 mL x 3) and CH₂Cl₂ (2 mL x 2).

(e) Cleavage of the peptide from resin

The residual resin was moved to a test tube and treated with TFA/H₂O 19:1 (3 mL) for 3 h. The mixture was filtrated. The filtrate was concentrated *in vacuo* to give a crude mixture (38 mg). MALDI-TOF MS data of the crude mixtures were depicted in SI-Figure 1.



Matrix: α -CHCA, Negative mode

SI-Figure 1. MALDI-TOF MS Analysis of Peptide Library **22-24**.

Solid phase synthesis of peptide libraries 25-27

Coupling reactions were performed by a series of sequential transformations.

25: (a), (b), (c), (d), (c), (d), (c), (e)

26: (a), (d), (a), (b), (c), (d), (c), (d), (c), (e)

27: (a), (d), (a), (d), (a), (b), (c), (d), (c), (e)

The solid phase synthesis of libraries **25-27** was performed in a small reaction tube with a membrane filter (LibraTube, HiPep Lab. Inc.) using FmocHN-Phe-Wang resin (Watanabe Chemical Industries, Ltd., 0.67 mmol/resin(g), 150 mg, 0.10 mmol).

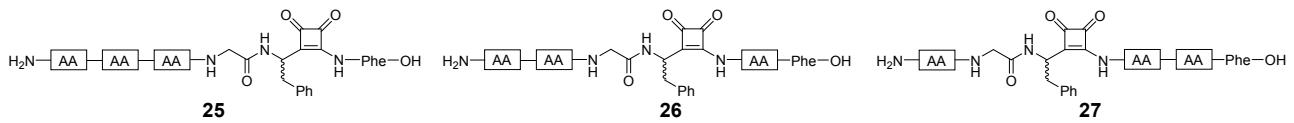
(a) Removal of the Fmoc group from peptides not containing the α -Asq

The resin was treated with piperidine/DMF 1:4 (2 mL). The reaction tube was shaken by a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 15 min, the mixture was filtrated. The residual resin was washed with DMF (2 mL x 5) and CH_2Cl_2 (2 mL x 2).

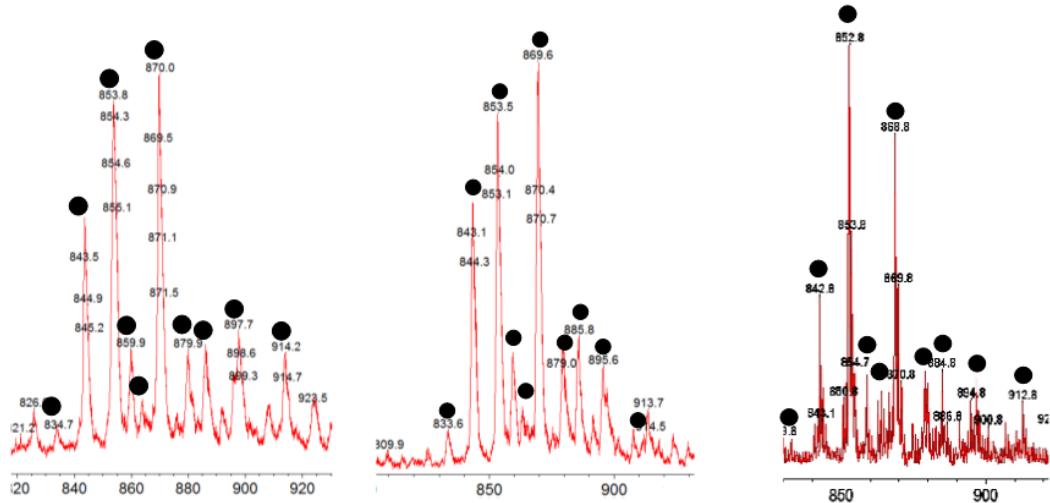
(b) Linkage of dipeptide unit **20**

To a suspension of the NH_2 group-free peptide linked to the resin in AcOEt (2 mL) were added **20** (116 mg, 0.40 mmol) and DIEA (35 μL , 0.20 mmol). The reaction tube was shaken by a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 60 h, the mixture was filtered. The residual resin was washed with DMF (2 mL x 3) and CH_2Cl_2 (2 mL x 2).

(c) Removal of the Fmoc group from peptides containing the α -Asq

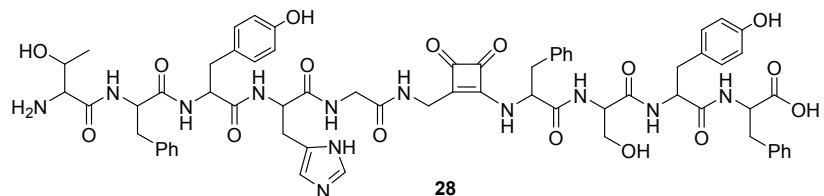

The resin was treated with $\text{Et}_2\text{NH}/\text{DMF}$ 1:4 (2 mL). The reaction tube was shaken by a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 15 min, the mixture was filtrated. The residual resin was washed with DMF (2 mL x 3) and CH_2Cl_2 (2 mL x 2).

(d) Coupling reaction of Fmoc-amino acids

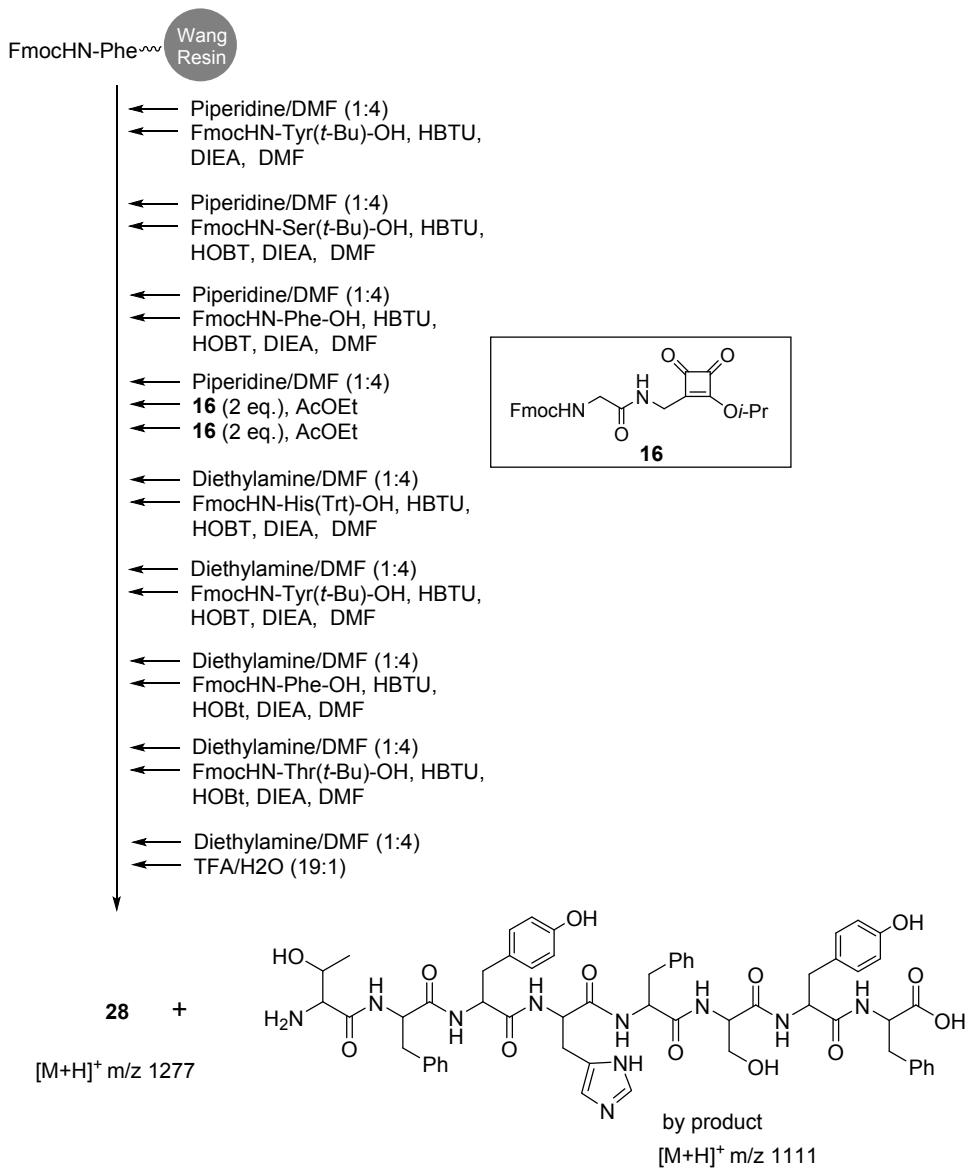

To a suspension of the residual resin in DMF (2 mL) were added a mixture of amino acids [FmocHN-Phe-OH/FmocHN-Tyr(*t*-Bu)-OH/FmocHN-His(Trt)-OH (1.33 mmol each)], HBTU (3.6 mmol), HOEt (4 mmol), and DIEA (8 mmol). The reaction tube was shaken by a vortex mixer for 1 min and equipped with a rotary shaker. After mixing for 1.5 h, the mixture was filtrated. The residual resin was washed with DMF (2 mL x 3) and CH_2Cl_2 (2 mL x 2).

(e) Cleavage of the peptide from resin

The residual resin was moved to a test tube and treated with TFA/ H_2O 19:1 (3 mL) for 3 h. The filtrate was concentrated *in vacuo* to give a crude mixture (ca. 105 mg). MALDI-TOF MS data of the crude mixtures were depicted in SI-Figure 2.

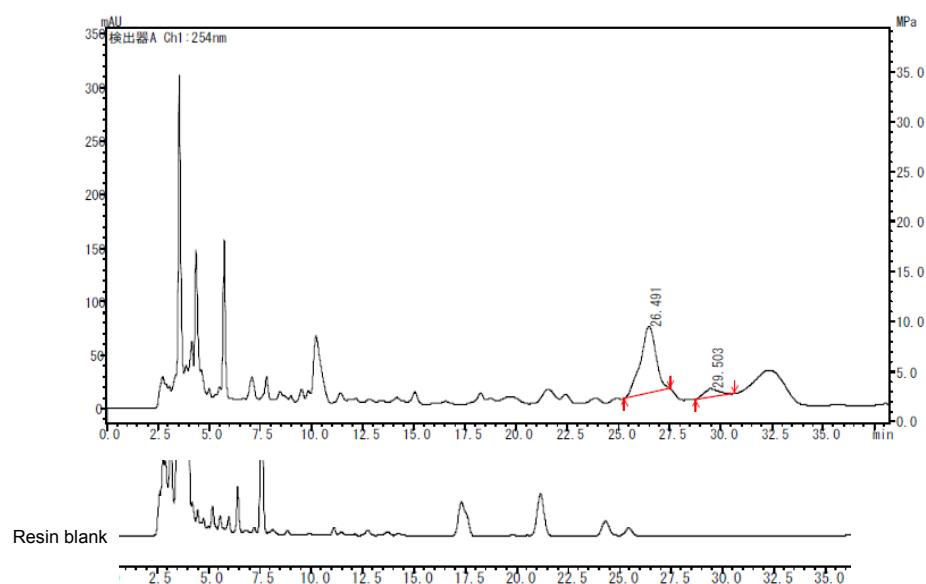


Matrix: α -CHCA, Positive mode



SI-Figure 2. MALDI-TOF MS data of Peptide library **25-27**. Matrix: α -CHCA, Positive mode.

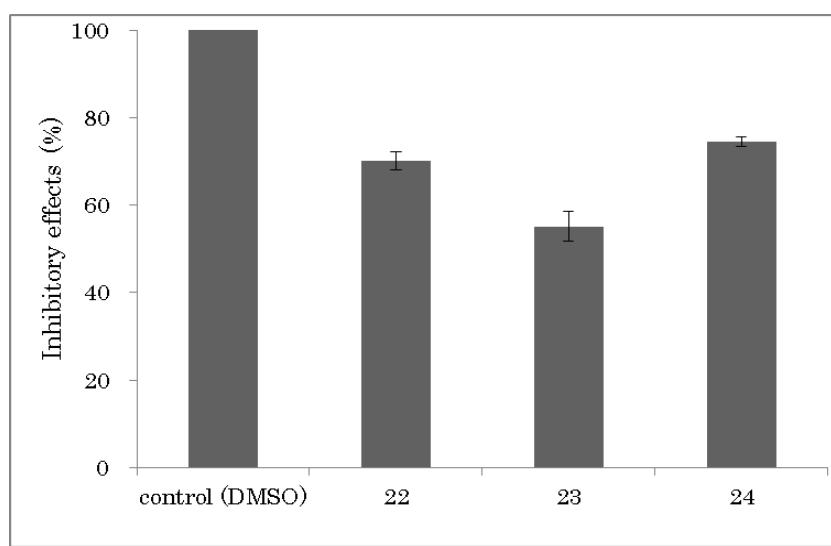
Solid phase synthesis of **28**



In accordance to the method for the solid phase synthesis of peptide libraries **20-22**, the model peptide **28** was prepared starting from the resin (0.05 mmol) by the following coupling sequence.

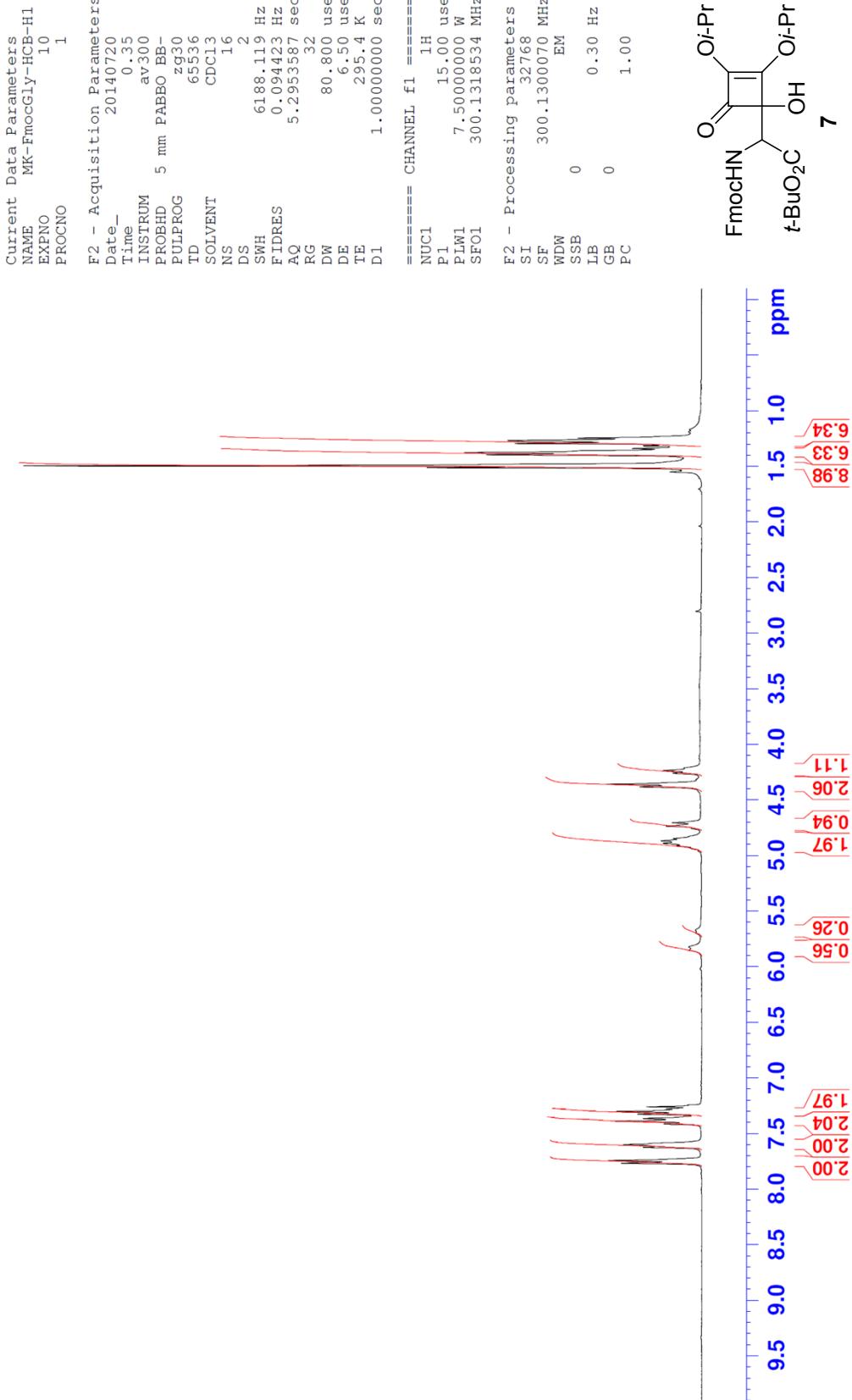
HPLC purification of the resulting peptide mixture

10 μ L of a solution of the crude peptide in H₂O (24 mg/mL) was subjected to reverse phase HPLC several times [column: Nacalai Cosmosil Packed Column Cholester, Column Size : 4.6 x 250 mm, solvent: 25% MeCN (0.1% TFA)/H₂O (0.1% TFA), flow rate: 1 mL/min, UV detection at 254 nm, retention time: **28** for 26.5 min, by product for 29.5 min]. After lyophilization, peptide analog **28** (< 0.1 mg) was obtained. The purity was confirmed by the MALDI-TOF MS analysis (Figure 2 (a) in the text).

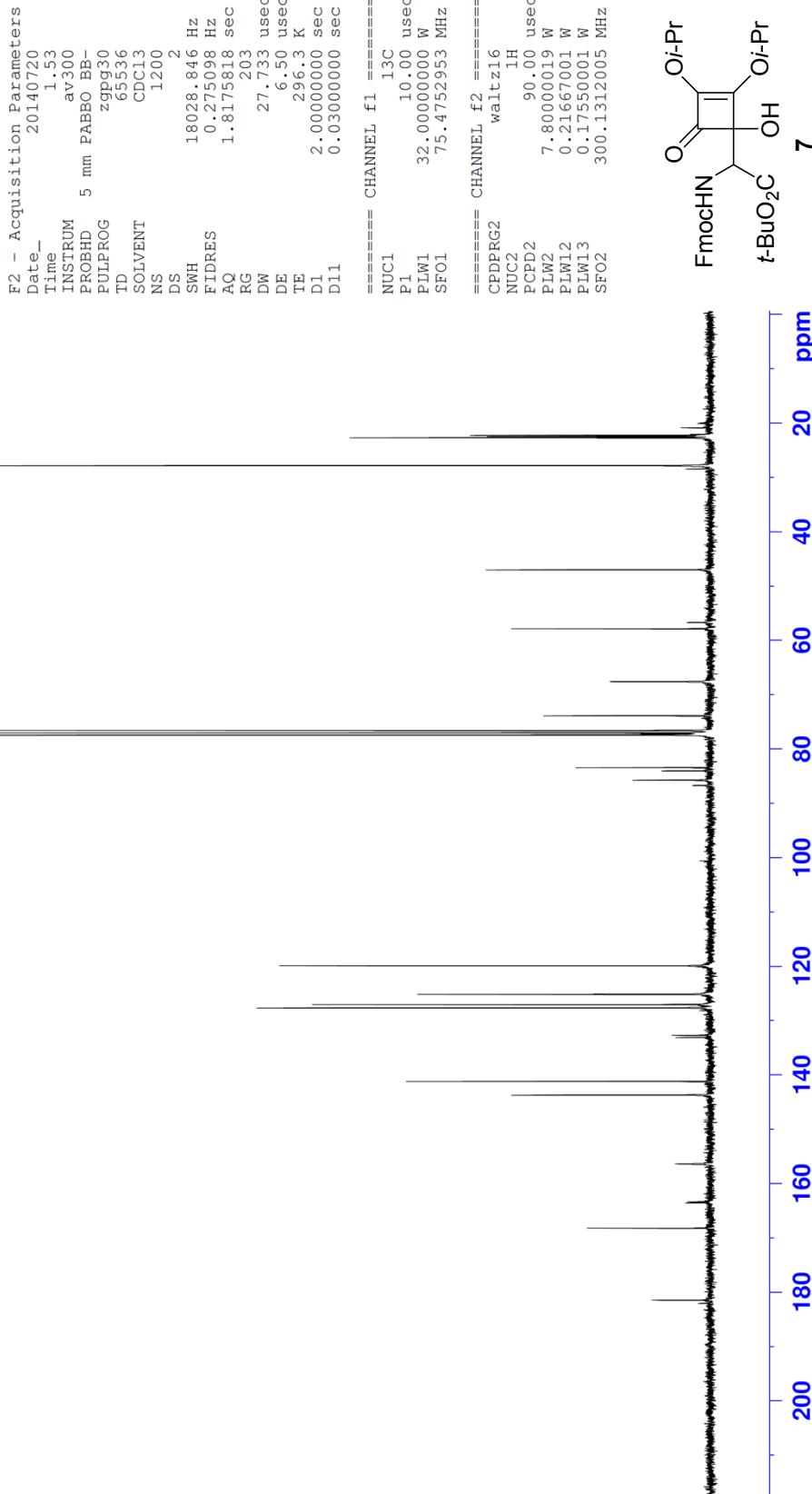


Reaction of **28** with carboxypeptidase Y

Peptide **28** purified by the HPLC purification described above was dissolved in water (15 μ L). A buffer solution of carboxypeptidase Y (5 μ L, 2.5 mM / 50 mM ammonium bicarbonate) was added to a solution 5 μ L of peptide solution in an eppendorf-tube. The reaction mixture was incubated at 30 °C for 30 min. The time course of the reaction was monitored by by MALDI-TOF/MS (see Figure 4. in the text)


Growth inhibitory effects of HepG2 Cell

According to the modified method of a previous paper (Yang et al., 2007), the cultures of rat hepatoma cells (dRLh84) were maintained at 37 °C in humidified atmosphere containing 5% CO₂. Exponentially growing cells were trypsinized, seeded at an appropriate density and incubated for 24 h to allow adhesion and growth. Trypsinized cells were suspended in the culture medium at a density of 5 x 10⁴ cells/mL and 100 µL of the suspension was dispensed into each well of a 96-well microtiter plate. In a 24 h pre-incubation, DMSO used as a control or peptides for assays were added to culture medium of cells. After subsequent 48 h incubation, cells were trypsinized and determined by means of counting in Burker-Turk hemacytometer. Results were expressed as means±S.E. of three independent experiments.


P. Yang, S. Abe, Y. Sato, T. Yamashita, F. Mtsuda, T. Hamayasu, K. Imai and K. Suzuki (2007) A palmitoyl conjugate of an insect pentapeptide causes growth arrest in mammalian cells and mimics the action of diapause hormone. *J. Insect Biotech. Sericol.* **76**, 63-69.


¹H- and ¹³C-NMR data of new compounds.

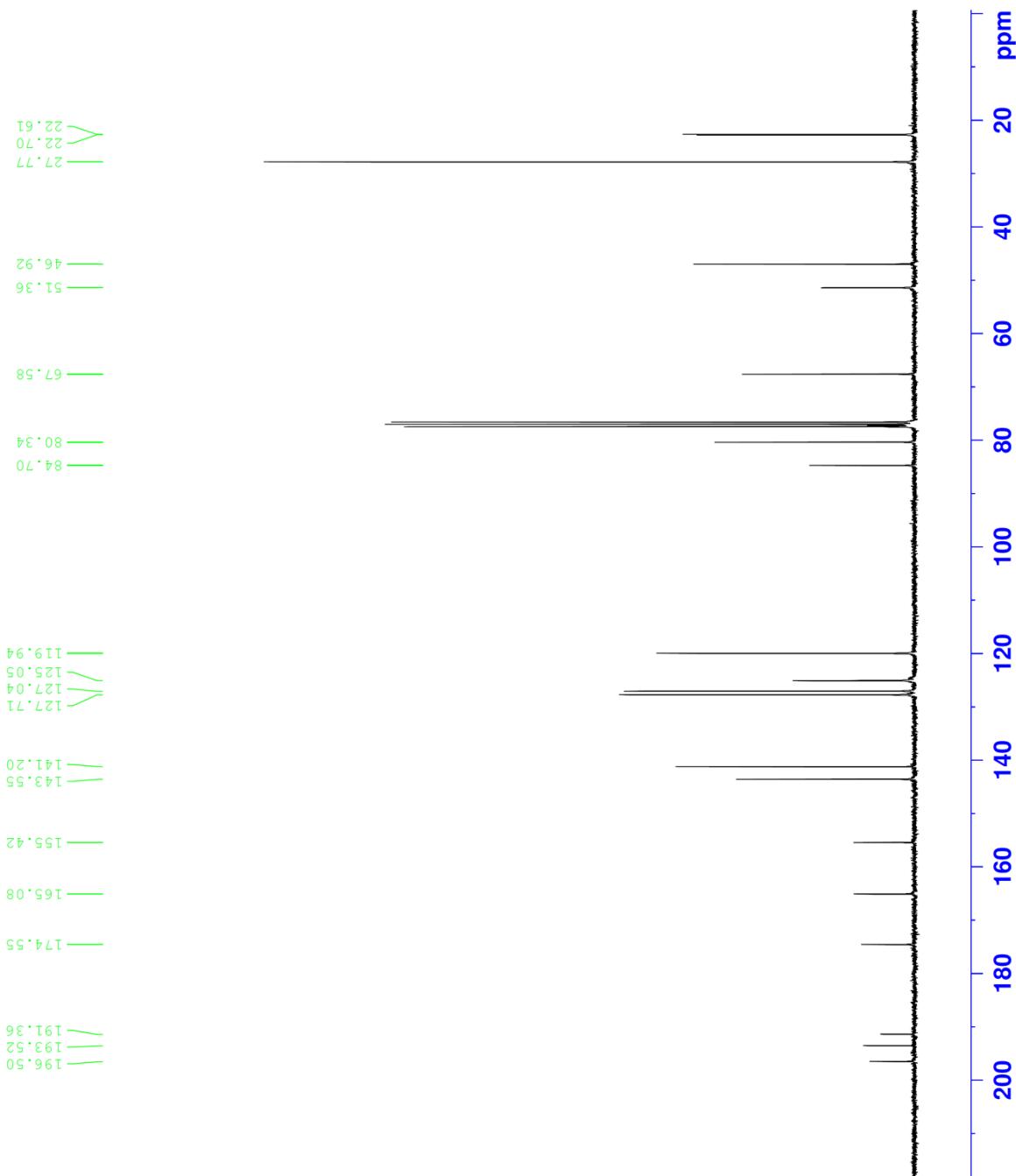
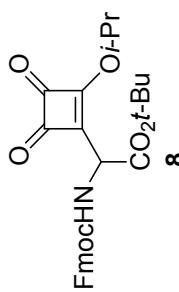
Current Data Parameters
 NAME MK-FmocGly-HCB-C13
 EXPNO 10
 PROCNRO 1

Current Data Parameters
 NAME MK-Fmoc-SqGly(CO2Bu)-OPr-Cl3
 EXPNO 10
 PROCN0 1

F2 - Acquisition Parameters

Date 20140719
 Time 23.17
 INSTRUM av300
 PROBHD 5 mm PABBO BB-
 PULPROG 29P30
 TD 65336
 SOLVENT DDC13
 NS 1200
 DS 18028.846 Hz
 SWH 0.27598 Hz
 FIDRES 1.817518 sec
 RG 203
 DW 27.133 usec
 DE 6.133 usec
 TE 296.1 K
 D1 2.000000 sec
 D11 0.0300000 sec

===== CHANNEL f1 =====

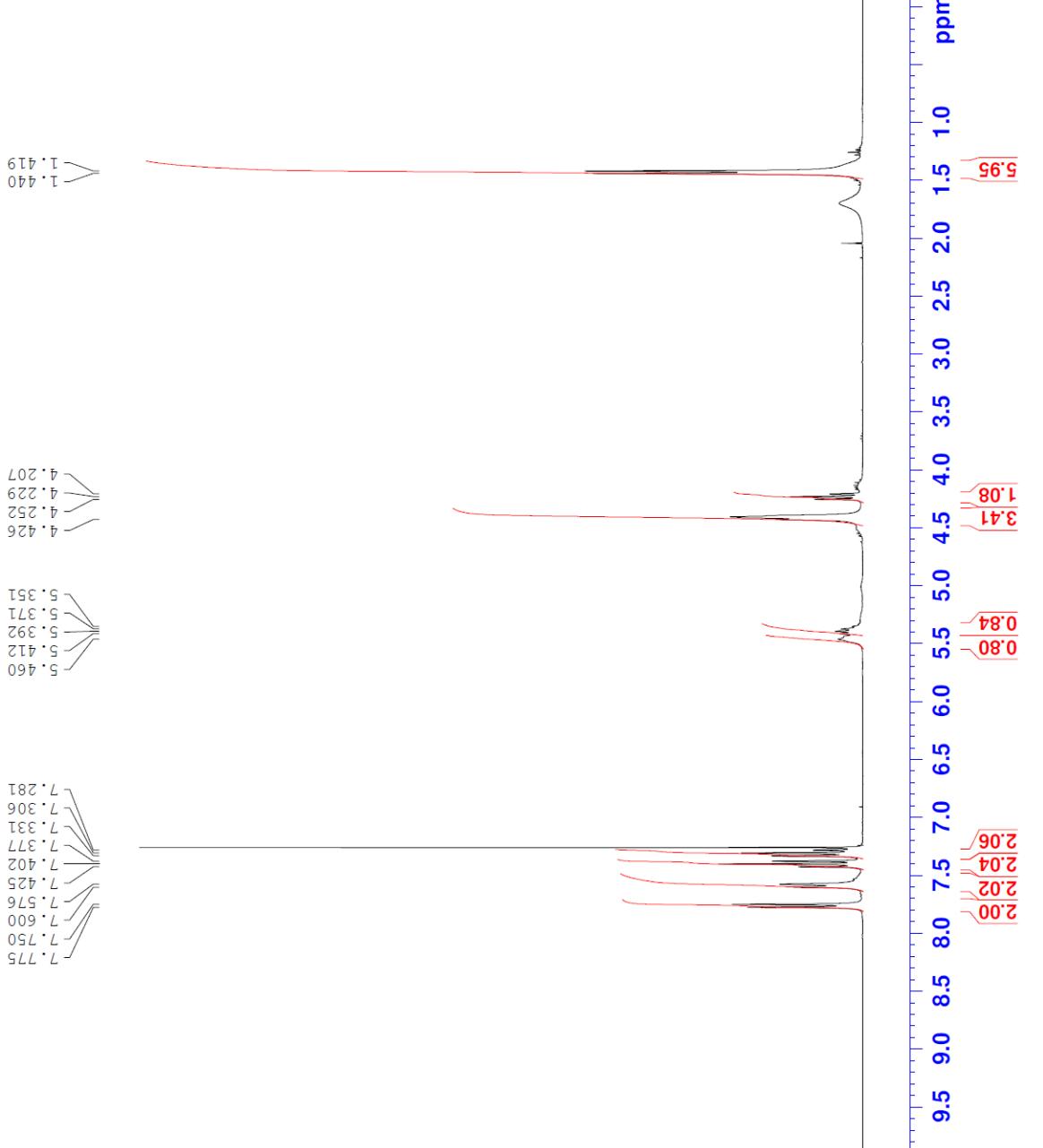


NUC1 13C
 P1 10.00 usec
 PL91 32.000000 W
 SFO1 75.4752953 MHz

===== CHANNEL f2 =====

CPDPRG2 walt16
 NUC2 1H
 PCPD2 90.00 usec
 PLW2 7.80000019 W
 PLW12 0.21667001 W
 PLW13 0.17550001 W
 SFO2 300.1312005 MHz

F2 - Processing parameters

SI 32768
 SF 75.467750 MHz
 WDW 0
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 1.40



Current Data Parameters
NAME MK-Fmoc-SqGly-OPr-H1
EXPNO 40
PROCNO 1

F2 - Acquisition Parameters
Date 20140724
Time 10.28
INSTRUM av300

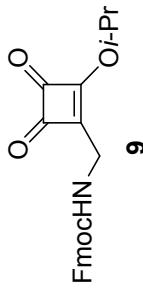
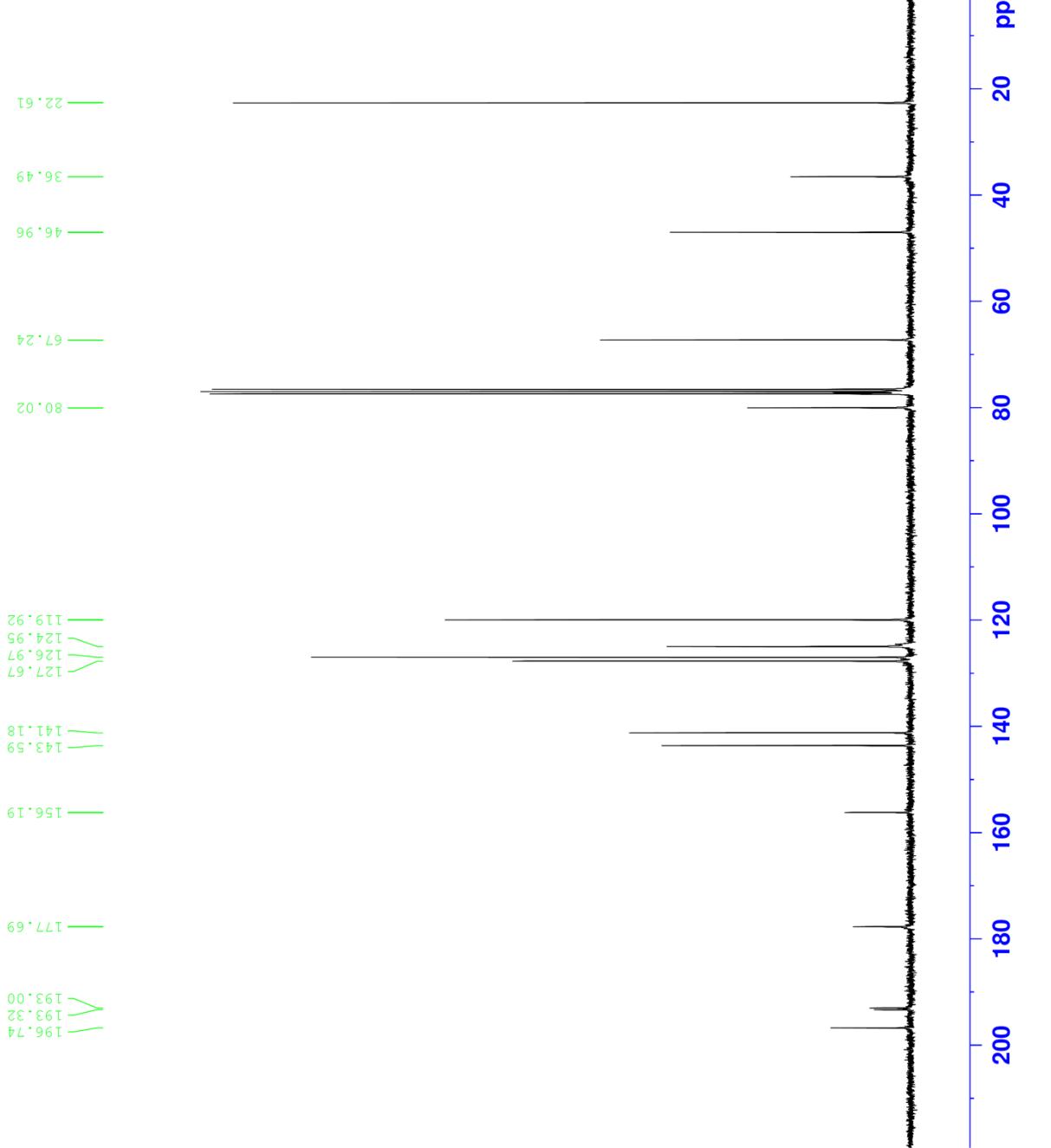
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 65536
SOLVENT CDCl3
NS 48
DS 2
SWH 6188.119 Hz
FIDRES 0.094423 Hz
AQ 5.2953587 sec
RG 203
DW 80.800 usec
DE 6.50 usec
TE 295.5 K
D1 1.0000000 sec

===== CHANNEL f1 =====
NUC1 1H
P1 15.00 usec
PLW1 7.5000000 W
SFO1 300.1318534 MHz
F2 - Processing parameters
SI 32768
SF 300.1300067 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

Current Data Parameters
 NAME MK-Fmoc-SqGly-OPr-C13
 EXPNO 20
 PROCN 1

F2 - Acquisition Parameters

Date_ 20140721
 Time 5.16
 INSTRUM 5 mm PABBO BB-
 PROHD PULPROG 2gp930
 TD 65536
 SOLVENT CDC13
 NS 2400
 DS 2
 SWH 18028.846 Hz
 FIDRES 0.275098 Hz
 AQ 1.8175818 sec
 RG 203
 DW 27.733 usec
 DE 6.50 usec
 TE 296.1 K
 D1 2.0000000 sec
 D11 0.03000000 sec

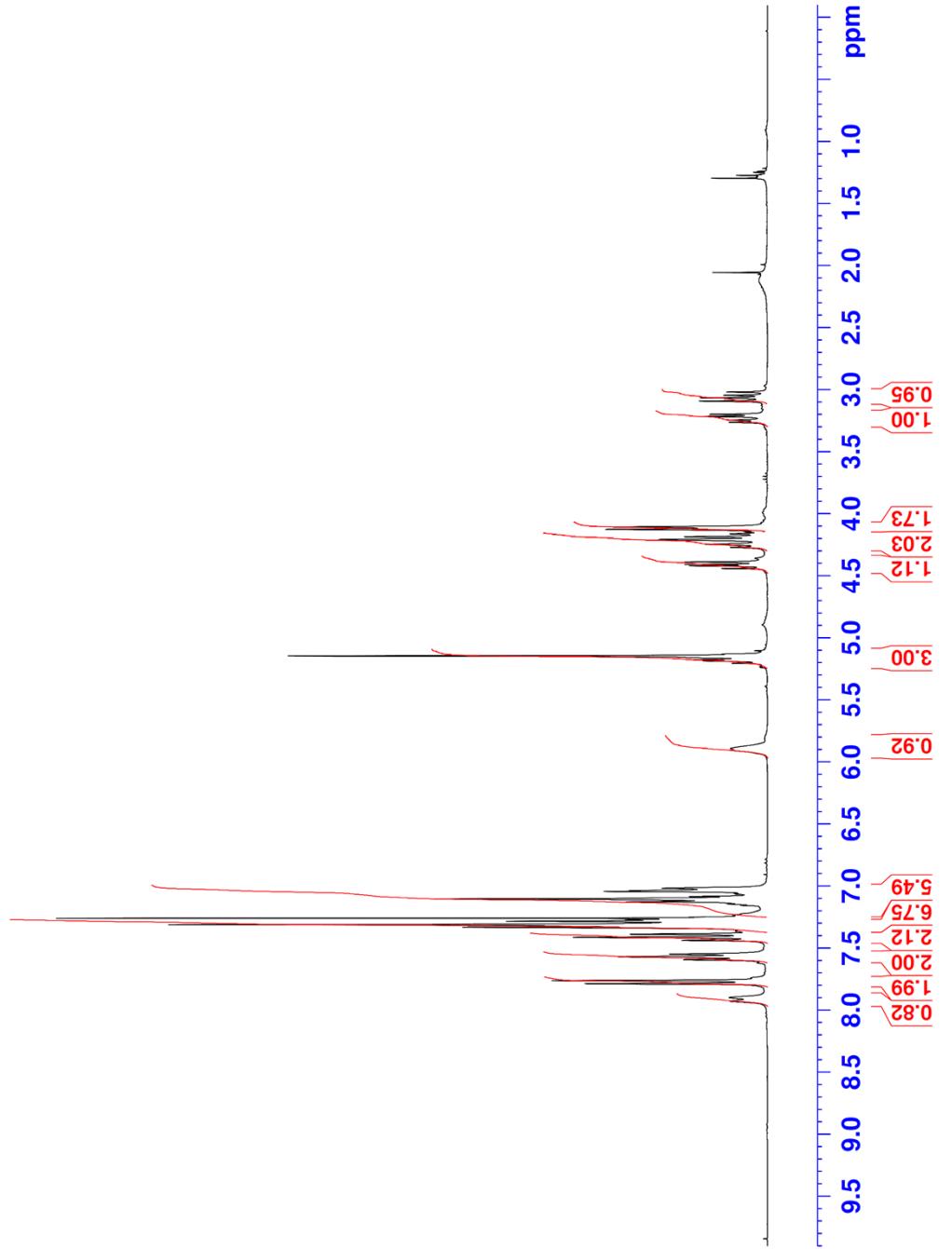


===== CHANNEL f1 =====

NUC1 13C
 P1 10.00 usec
 PLW1 32.0000000 W
 SFO1 75.4732953 MHz

===== CHANNEL f1 =====

CPDRG2 CPDRG2
 NUC2 1H
 PCPD2 90.00 usec
 PLW2 7.80000019 W
 PLW12 0.21667001 W
 PLW13 0.17550001 W
 SFO2 300.1312005 MHz

F2 - Processing parameters
 SI 32768
 SF 75.4677586 MHz
 WDW EM
 SSB 0
 LB 1.00 Hz
 GB 0
 PC 1.40



Current Data Parameters
 NAME MK-Fmoc-SGly-Phe-OBn-H1
 EXPNO 20
 PROCNO 1

F2 - Acquisition Parameters
 Date 20110722
 Time 6.39
 INSTRUM av300
 PROBID 5 mm PABBO BB-
 PULPROG PULPROG
 TD 2930
 SOLVENT 65536
 NS 16
 DS 2
 SWH 6188-119 Hz
 FIDRES 0.094423 Hz
 AQ 5.2933587 sec
 RG 36
 DW 80-800 usec
 DE 6.50 usec
 TE 295.6 K
 D1 1.0000000 sec
 ===== CHANNEL f1 =====
 NUC1 1H
 P1 15.00 usec
 PLW1 7.5000000 W
 SFO1 300.1318534 MHz

F2 - Processing parameters
 SI 32768
 SF 300.1330063 MHz
 WDW EM
 SSB 0
 LB 0.30 Hz
 GB 0
 PC 1.00

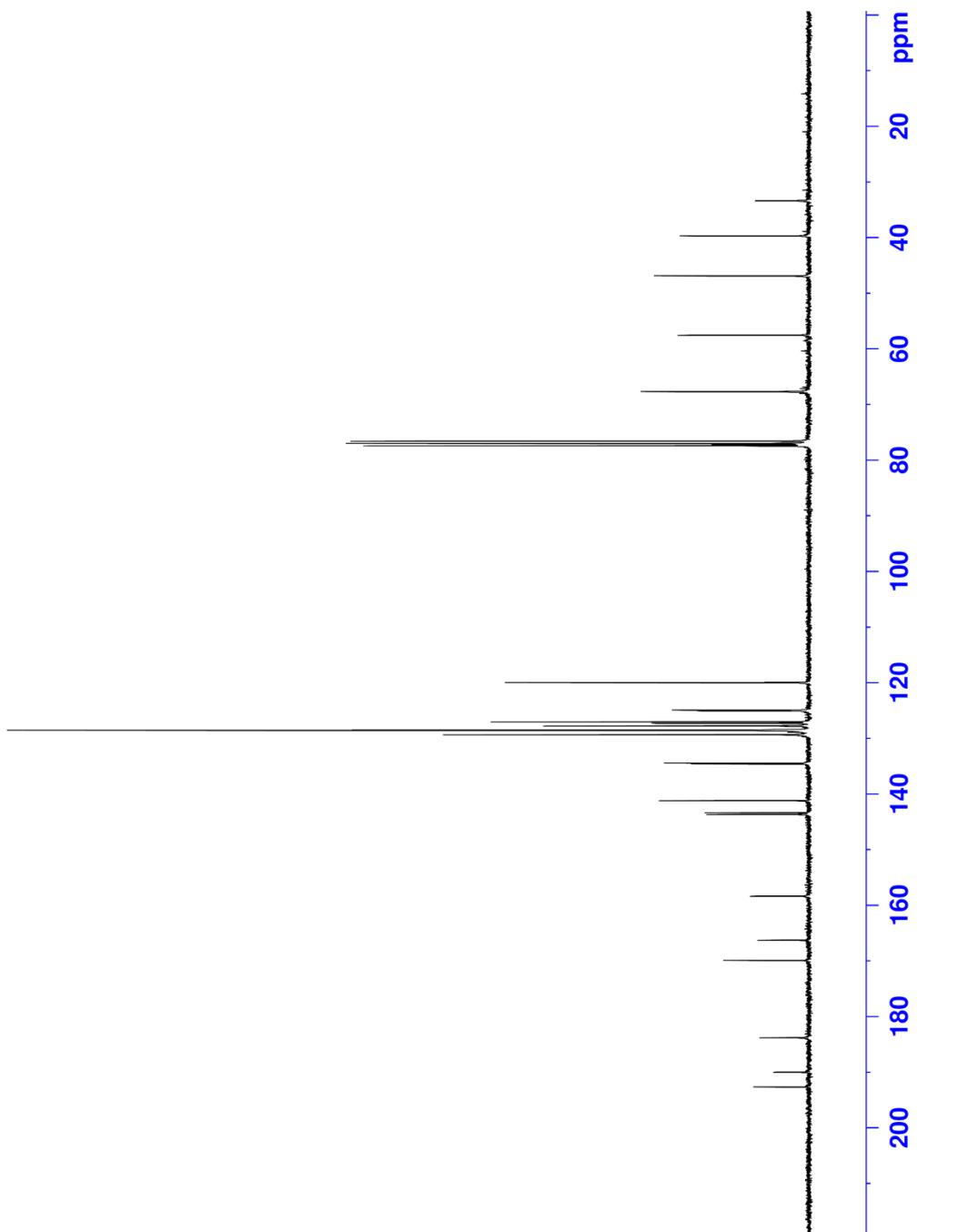
Current Data Parameters
NAME: MK-Fmoc-SqGly-Phe-OBn-C13
EXPNO: 20
PROCNO: 1

F2 - Acquisition Parameters

Date: 20140722
Time: 8.23
INSTRUM: av300
PROBID: 5 mm PABBO BB-
PULPROG: 29pg30
TD: 65536
SOLVENT: CDCl3
NS: 1600
DS: 2
SWH: 180.28-846 Hz
FIDRES: 0.275098 Hz
AQ: 1.8175818 sec
RG: 203
DW: 27.33 usec
DE: 6.50 usec
TE: 296.3 K
D1: 2.0000000 sec
D11: 0.0300000 sec

===== CHANNEL f1 =====

NUC1: 13C
P1: 10.00 usec
PLW1: 32.0000000 W
SFO1: 75.4752253 MHz


===== CHANNEL f2 =====

CPDRG2: wait:16
NUC2: 1H
PCP2: 90.00 usec
PLW2: 7.80000019 W
PLW12: 0.21667001 W
PLW13: 0.17550001 W
SFO2: 300.1312005 MHz

F2 - Processing parameters

SI: 32768
SF: 75.467791 MHz
WDW: EM
SSB: 0
LB: 1.00 Hz
GB: 0
PC: 1.40

33.34
39.67
46.84
57.51
67.62
67.70
119.96
124.90
125.05
127.02
127.29
127.76
128.44
128.55
129.33
134.44
134.59
141.17
141.20
143.36
143.64
158.34
166.27
169.89
183.81
189.98
192.65

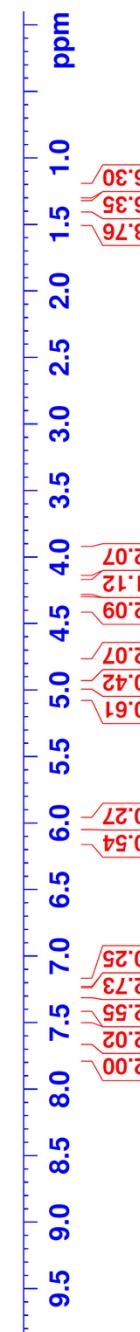
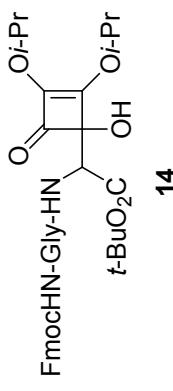
1.465
1.440
1.386
1.373
1.366
1.354
1.257
1.236
1.215

6.101
6.003
5.006
4.967
4.940
4.84
4.361
4.335
4.211
4.194
4.103
4.083
4.069
4.045
4.025
4.016
3.999
3.959
3.941

7.734
7.710
7.607
7.589
7.381
7.357
7.322
7.295
7.271
7.217
7.190

Current Data Parameters
NAME MK-FmocGly-Gly-HCB-H1
EXPNO 10
PROCNO 1

F2 - Acquisition Parameters



Date 20140720
Time 2.28
INSTRUM av300
PROBID 5 mm PABBO BB-
PULPROG ZG30
TD 65536
SOLVENT CDC13
NS 16
DS 2
SWH 6188.119 Hz
FIDRES 0.094423 Hz
AQ 5.2953587 sec
RG 22.6
DW 80.800 usec
DE 6.50 usec
TE 295.4 K
D1 1.0000000 sec

===== CHANNEL f1 =====

NUC1 1H
P1 15.00 usec
PLW1 7.50000000 W
SFO1 300.1318534 MHz

F2 - Processing parameters

SI 32768
SF 300.1300064 MHz
WDW EM
SSB 0
LB 0 0.30 Hz
GB 0 1.00
PC

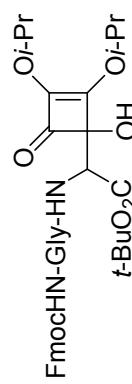
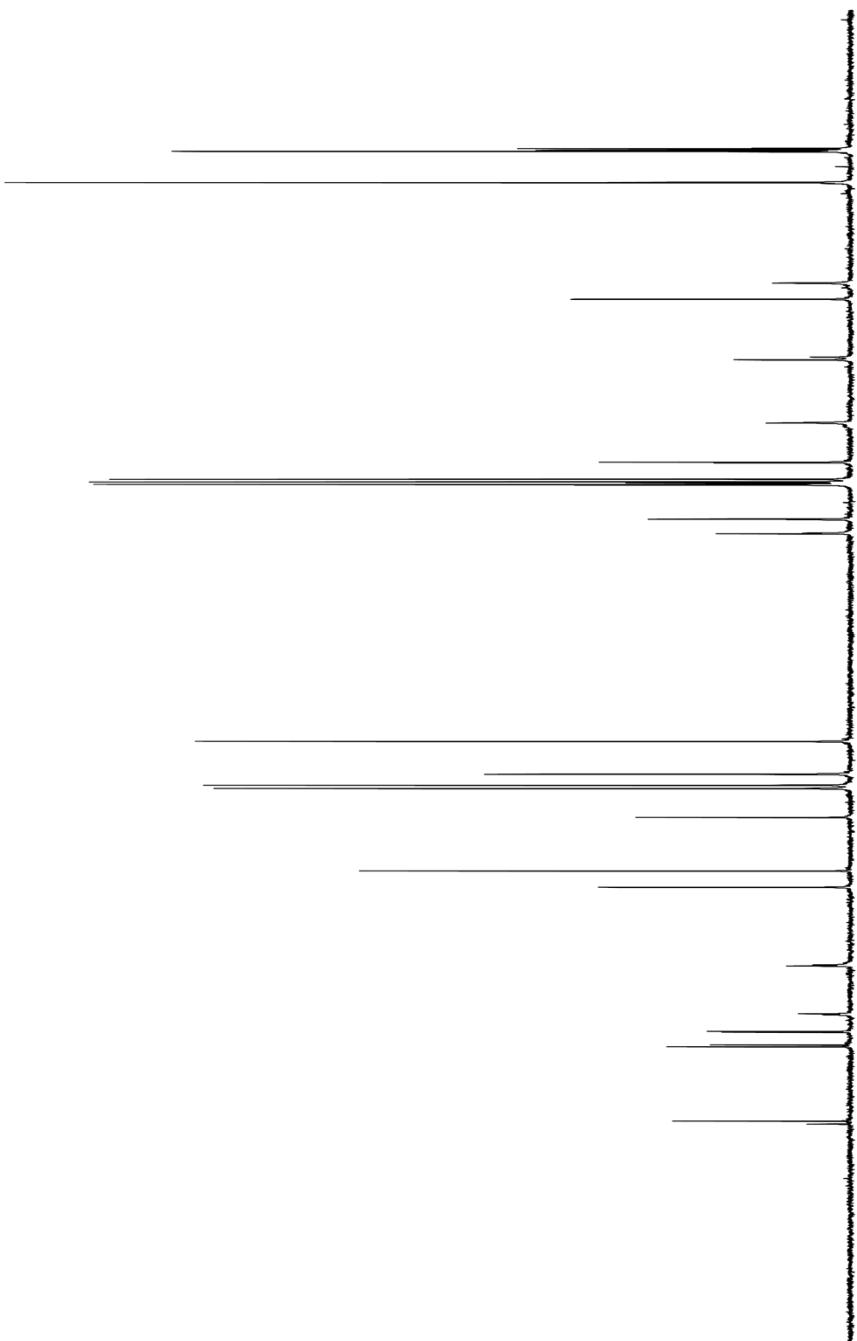
Current Data Parameters
NAME MK-FmocGly-Gly-HCB-C13
EXPNO 10
PROCNO 1

F2 - Acquisition Parameters

Date 20140720
Time 5.04
INSTRUM av300
PROBID 5 mm PABBO BB-
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 2400
DS 2
SWH 18028.846 Hz
FIDRES 0.275098 Hz
AQ 1.8175818 sec
RG 203
DW 27.733 usec
DE 6.50 usec
TE 296.0 K
D1 2.0000000 sec
D11 0.0300000 sec

===== CHANNEL f1 =====

NUC1 13C
P1 32.0000000 W
PLW1 75.4752953 MHz
SFO1 300.3312005 MHz



===== CHANNEL f2 =====

CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PLW2 7.800000019 W
PLW12 0.21667001 W
PLW13 0.17350001 W
SFO2 300.3312005 MHz

F2 - Processing parameters

SI 32768
SF 75.4677605 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40

22.05
22.11
22.35
22.41
22.57
22.63
22.67
27.70
44.25
46.90
56.44
56.89
67.29
73.74
73.84
77.53
83.11
83.21
85.42
85.53
119.73
125.14
126.94
127.49
132.24
141.07
143.73
143.76
143.80
156.53
156.72
164.57
164.73
167.49
167.63
169.72
170.02
182.25

14

Current Data Parameters -

NAME: MK-Fmoc-Gly-5-Sly(CO2Bu)-OPr-H1

10

EXPNO: 1

FRODNO: 1

F2 - Acquisition Parameters

Date: 20140720

Time: 13:31

INSTRUM: PABBO BBP

PROBHD: 5 mm PABBO BBP

PULPROG: FULFROG

TD: 65536

SOLVENT: CDCl3

NS: 48

DS: 1

SWH: 6188.119 Hz

ENDRES: 0.094423 Hz

AQ: 5.2935357 sec

RG: 290.203

DW: 80.800 usec

DE: 6.50 usec

TE: 295.8 K

D1: 1.0000000 sec

===== CHANNEL f1 =====

NUC1: 1H usec

P1: 15.00 usec

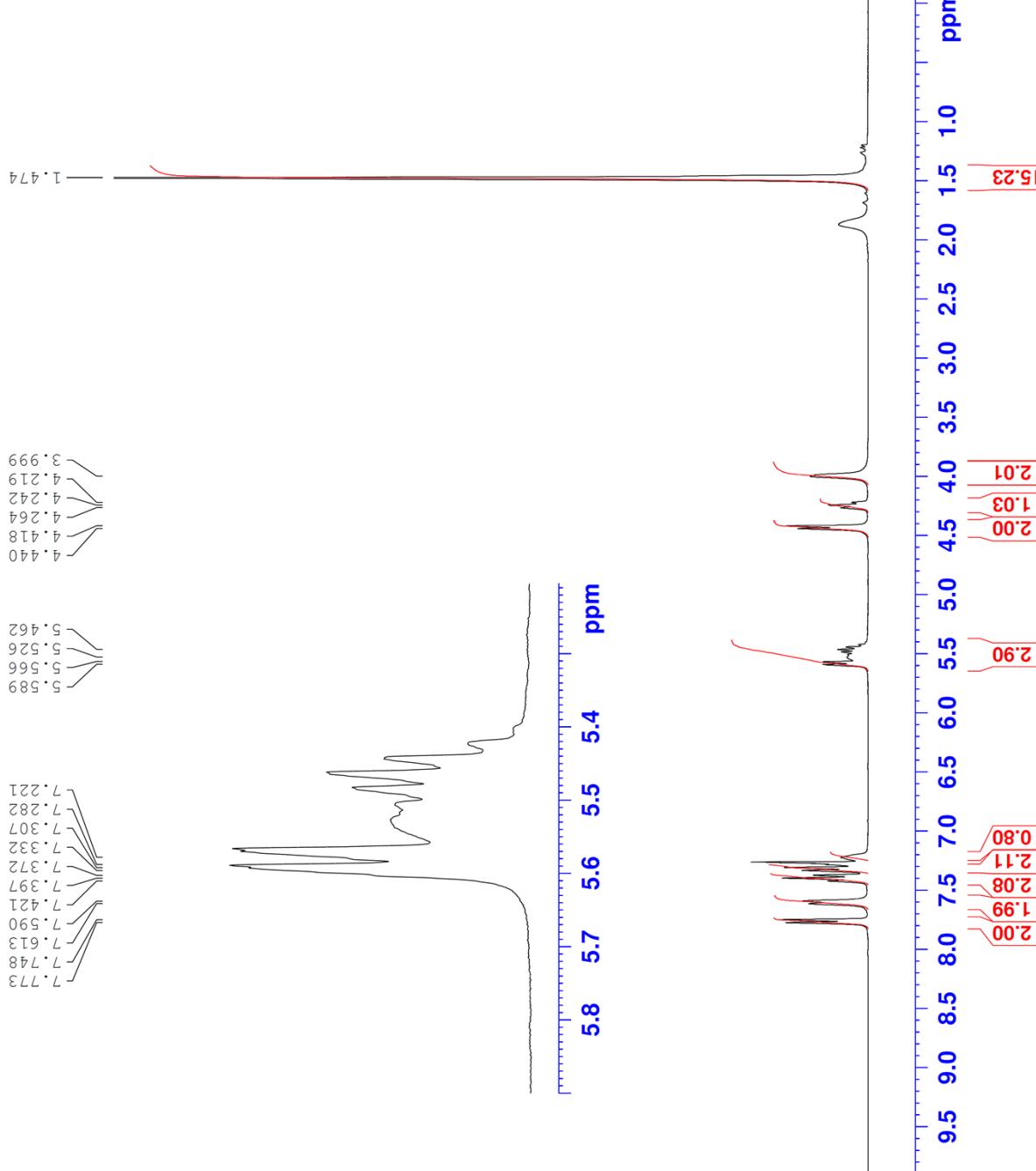
PLW1: 7.5000000 W

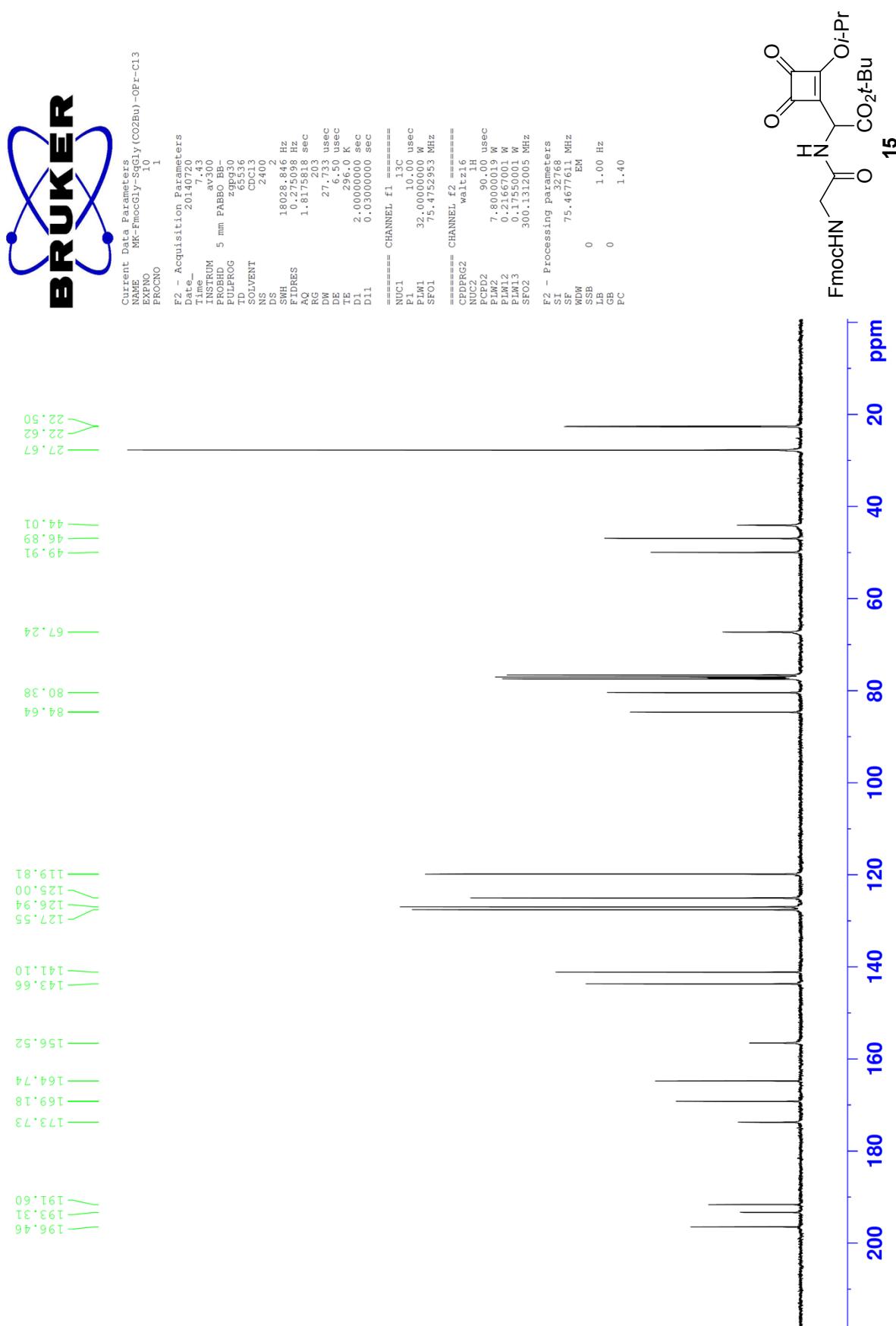
SFO1: 300.1318534 MHz

F2 - Processing parameters

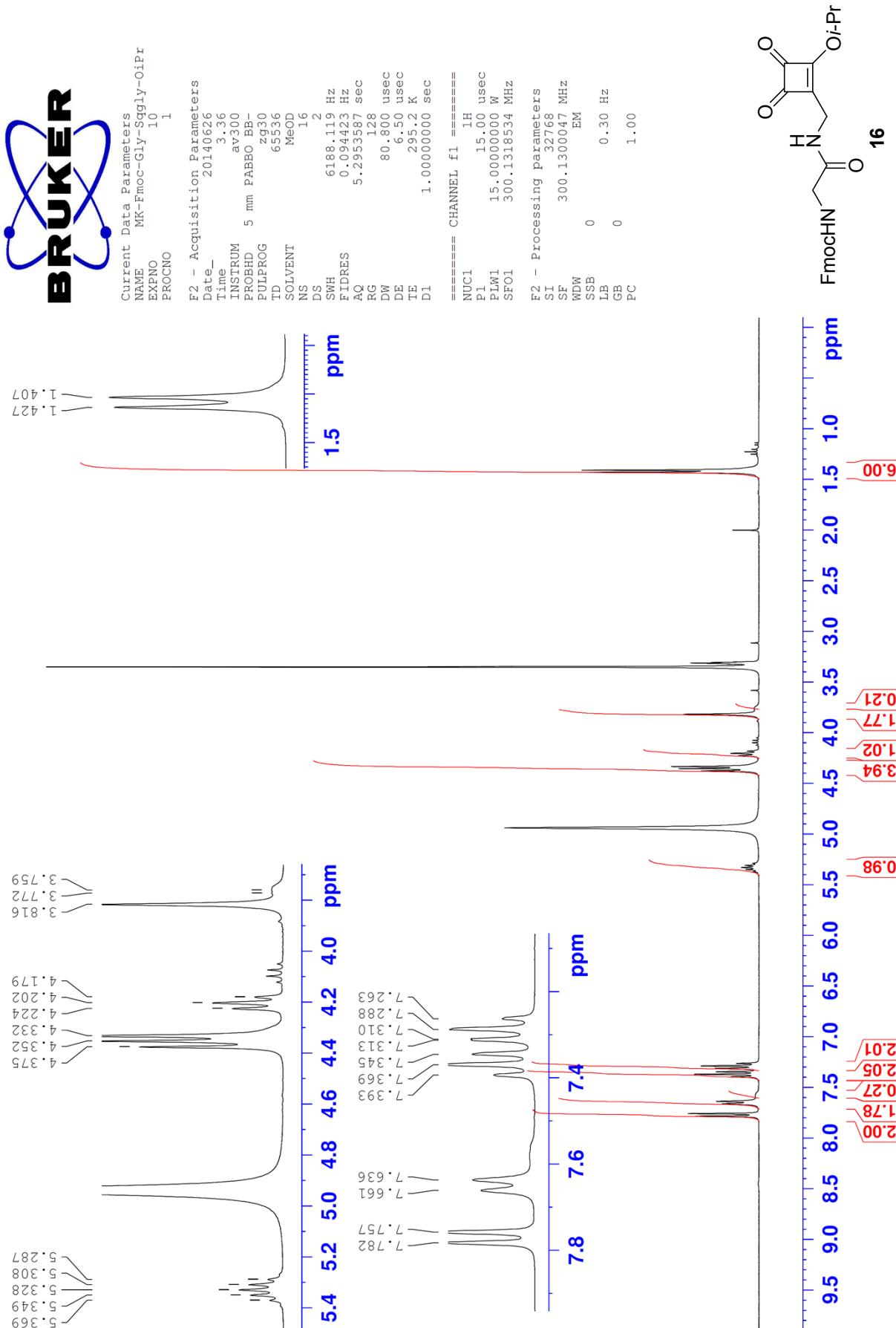
SI: 32768

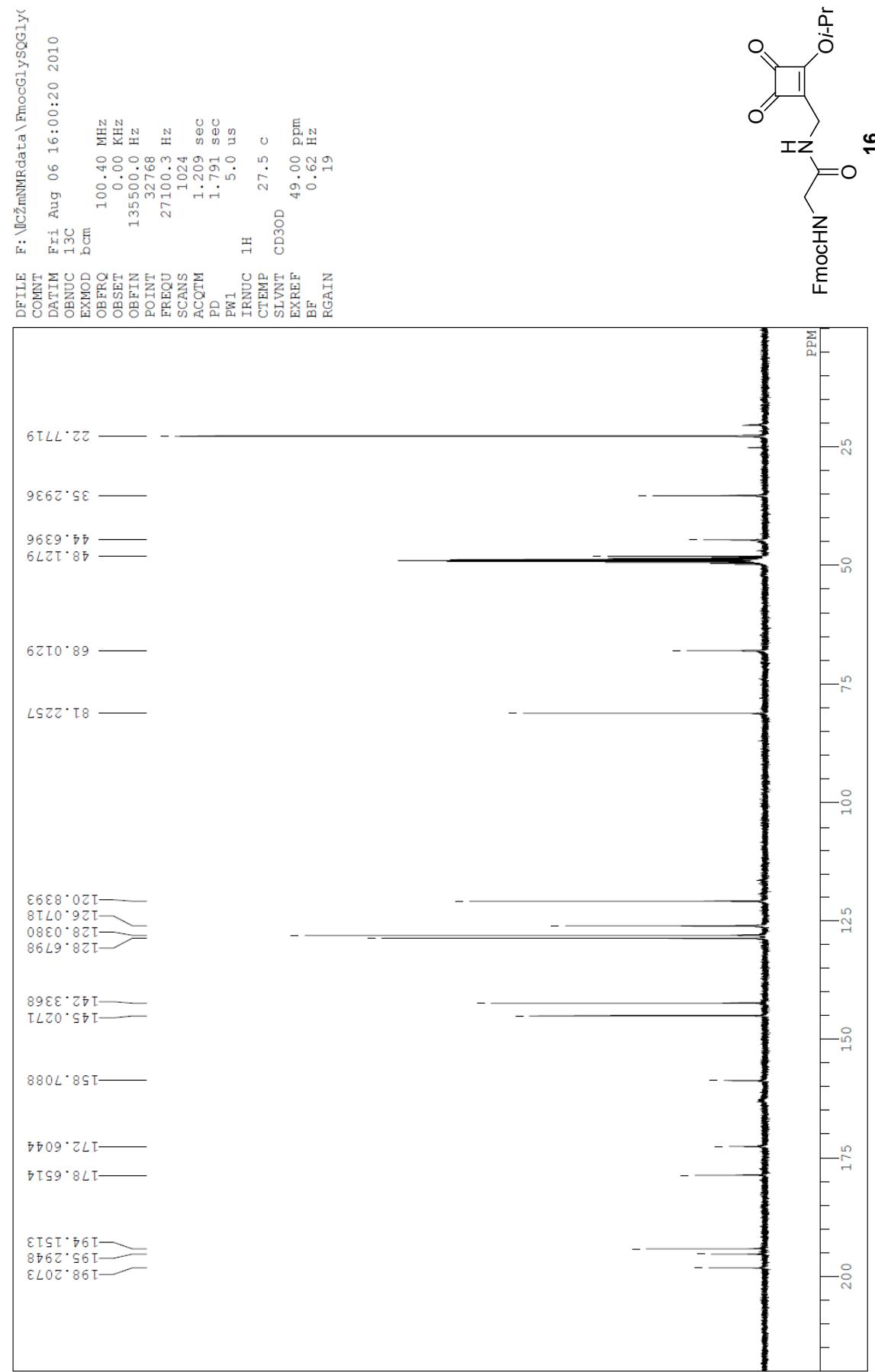
SF: 300.1300050 MHz


WDW: EM


SSB: 0

LB: 0.30 Hz

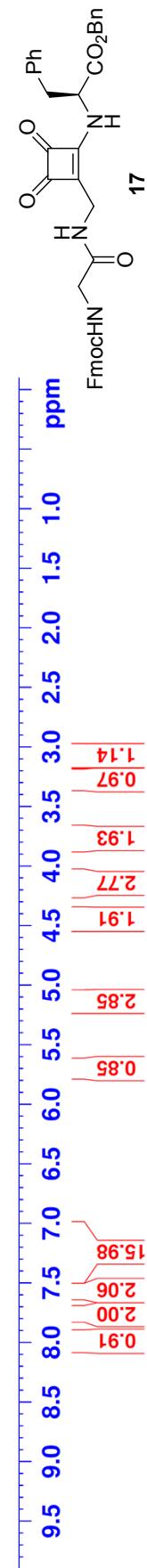

GB: 0


PC: 1.00

BRUKER

Current Data Parameters
 NAME MK-Fmoc-Gly-SgGly-Phe-OBn-H1
 EXPNO 10
 PROCHRO 1

F2 - Acquisition Parameters

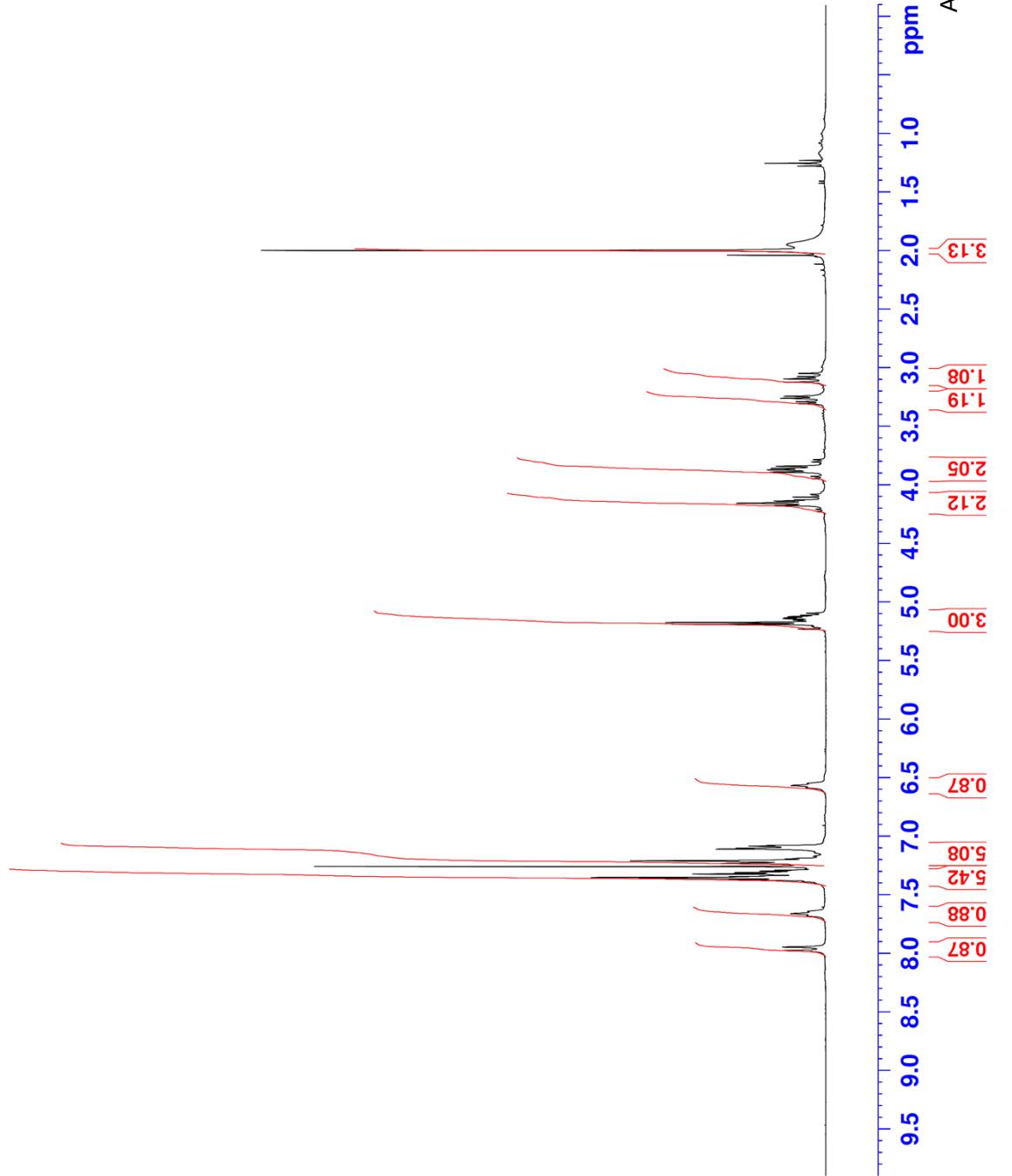

Date- 2014/07/21
 Time 0.25
 INSTRUM av300
 PROBHD 5 mm PABBO BB-
 PULPROG zg30
 TD 65536
 SOLVENT CDCl3
 NS 16
 DS 2
 SWH 6188.119 Hz
 FIDRES 0.054423 Hz
 AQ 5.29358 sec
 RG 64
 DW 80.800 usec
 DE 6.50 usec
 TE 295.5 K
 D1 1.0000000 sec

===== CHANNEL f1 =====

NUC1 1H
 P1 15.00 usec
 PLW1 7.5000000 W
 SF01 300.1318534 MHz

F2 - Processing parameters

SI 32768
 SF 300.1300005 MHz
 WDW EM
 SSB 0
 LB 0
 GB 0
 PC 1.00


Current Data Parameters
NAME MK-Ac-Gly-Sqly-Phe-OBn-H1
EXPNO 10
PROCNO 1

F2 - Acquisition Parameters

Date_ 20-40721
Time_ 23.5
INSTRUM av300
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 65536
SOLVENT CDCl3
NS 48
DS 2
SWH 6188.119 Hz
FIDRES 0.04443 Hz
AQ 5.2933587 sec
RG 203
DW 80.800 usec
DE 6.50 usec
TE 295.4 K
D1 1.0000000 sec

===== CHANNEL f1 =====

NUC1 1H
P1 15.00 usec
PL1 7.5000000 W
SF01 300.138534 MHz
F2 - Processing parameters
SI 32768
SF 300.1300068 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

Current Data Parameters
NAME MK-Ac-Gly-SqGly-Phe-OBn-C13
EXPNO 10
PROCNO 1

F2 - Acquisition Parameters

Date 20140722

Time 6.29

INSTRUM av300

PROBHD 5 mm PABBO BB-

FULLPROG zg9930

TD 65536

SOLVENT CIC13

NS 6000

DS 2

SWH 18028.846 Hz

FLDRES 0.275098 Hz

AQ 1.8173818 sec

RG 203

DW 27.733 usec

DE 6.50 usec

TE 295.7 K

D1 2.0000000 sec

D11 0.0300000 sec

===== CHANNEL f1 =====

NUC1 13C

P1 10.00 usec

PLW1 32.0000000 W

SFO1 75.4752953 MHz

===== CHANNEL f2 =====

CPDPRG2 waltz16

NUC2 1H

PCPD2 90.00 usec

PLW2 7.80000019 W

PLW12 0.21667001 W

PLW13 0.17550001 W

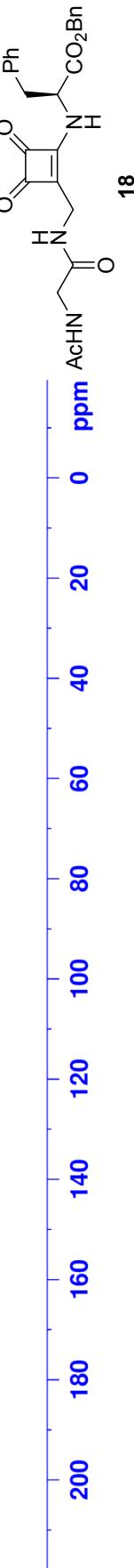
SFO2 300.1312005 MHz

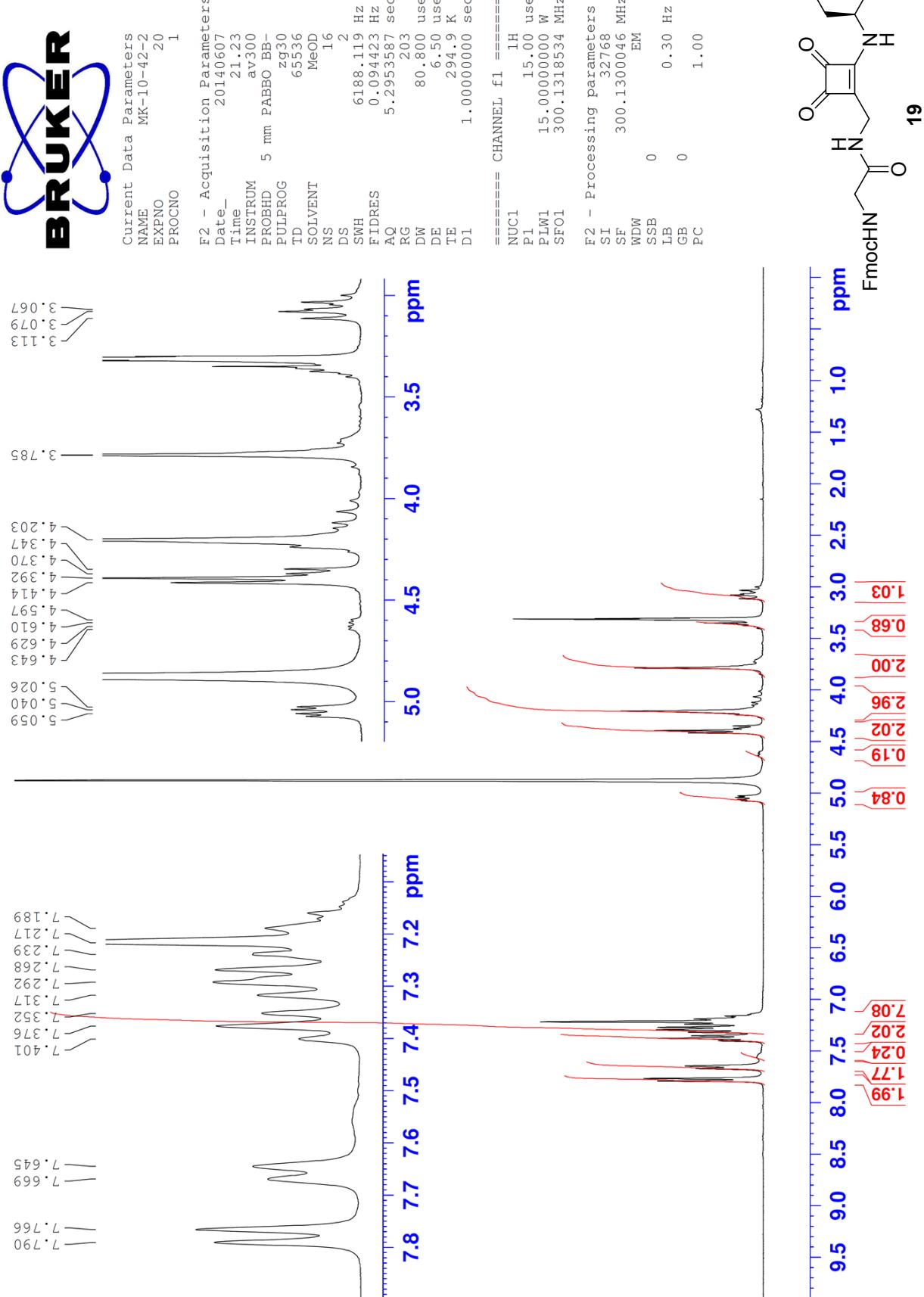
F2 - Processing parameters

S1 32768

SF 75.4677519 MHz

WDW EM

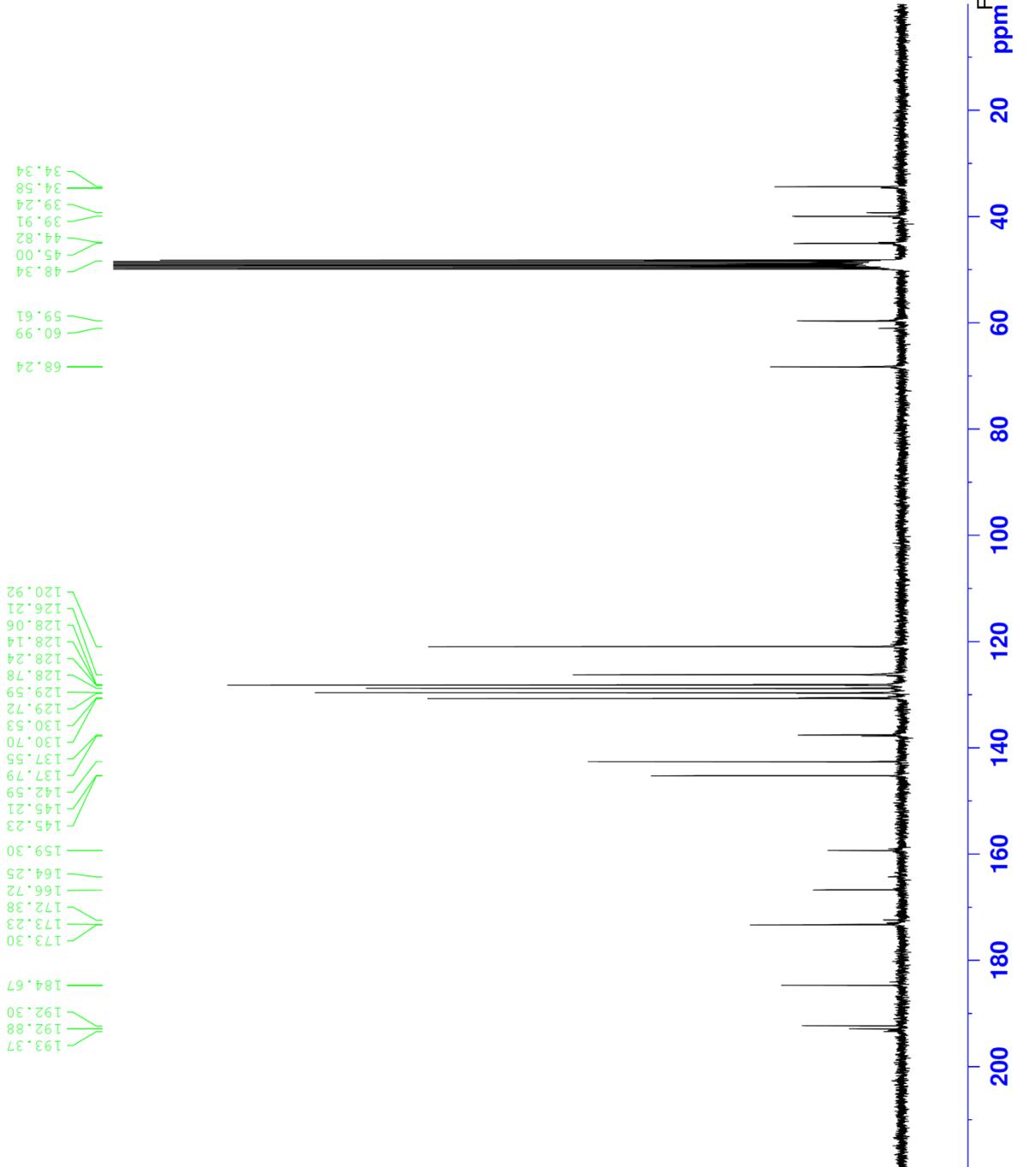

SSB 0


LB 1.00 Hz

GB 0

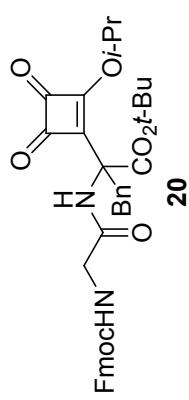
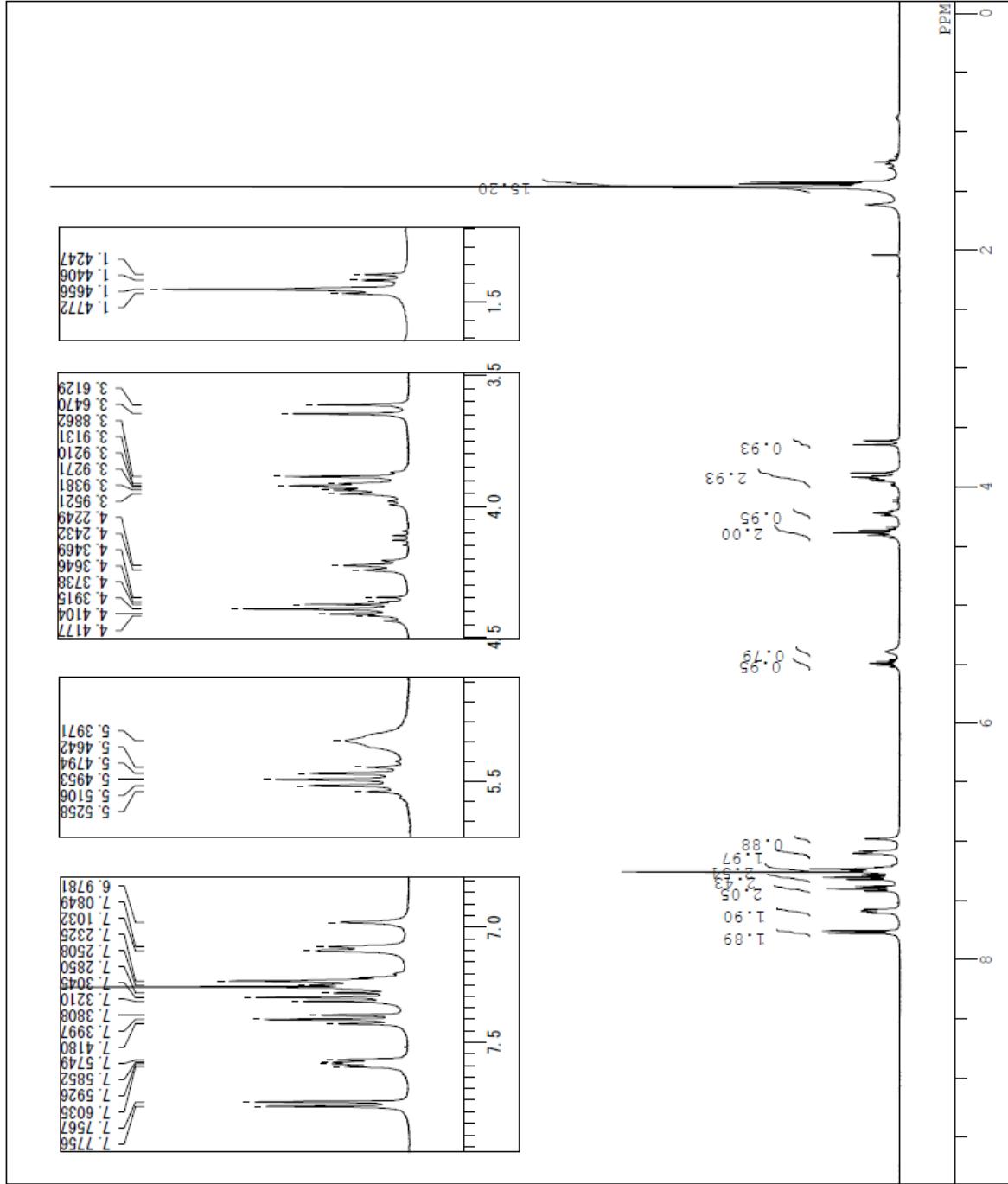
PC 1.40

22.86
32.55
39.49
43.21
57.83
67.78
127.37
128.48
128.67
128.70
129.49
134.69
134.85
166.12
170.23
171.31
171.62
183.68
190.05
192.43

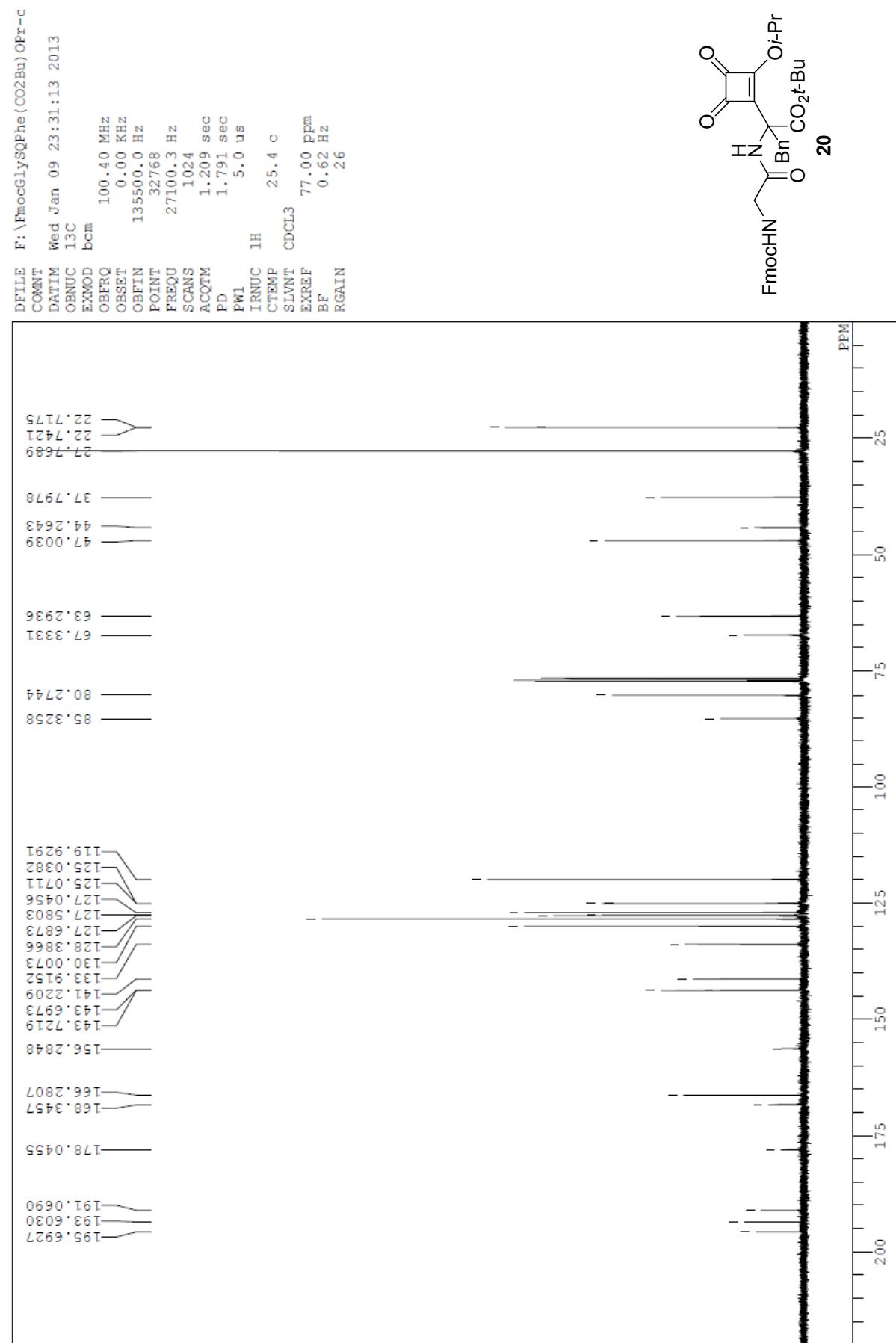

 BROOKhaven

Current	Data Parameters
NAME	MK-Fmoc-Gly-SGGLy-Phe-OH-C13
EXPNO	10
PROCNO	1

```

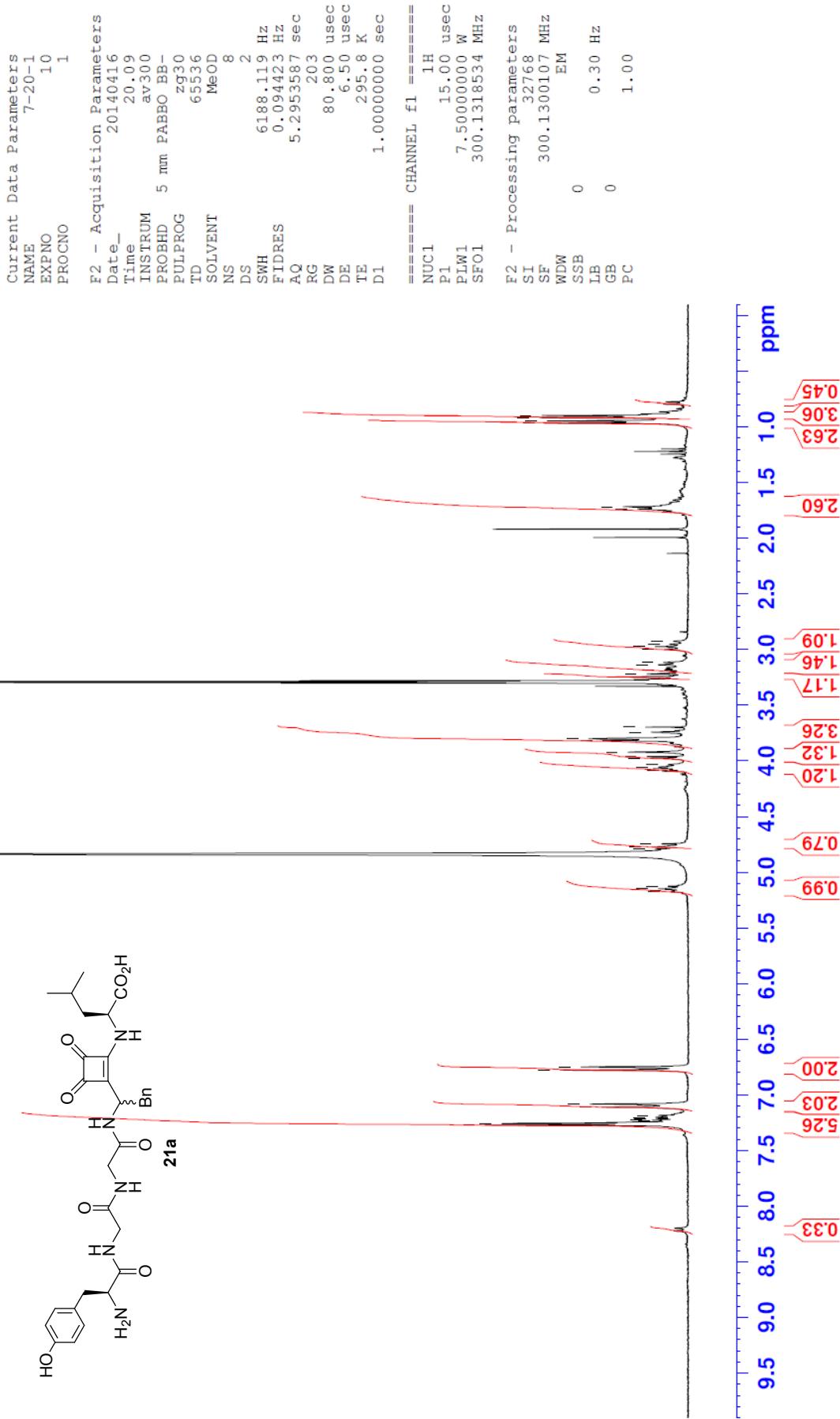


F2 - Acquisition Parameters
Date- 20140724
Time 2.12
INSTRUM av300
PROBID 5 mm PABBO BB-
PULPROG 2gp30
TD 65536
SOLVENT MeOD
NS 3200
DS 2
SWH 18028.846 Hz
FIDRES 0.275098 Hz
AQ 1.817518 sec
RG 203
DE 27.733 used
DW 6.50 ussec
TE 296.3 K
D1 2.000000 sec
D11 0.0300000 sec
=====
CHANNEL f1 =====
NUC1 13C
P1 10.00 usec
SW 32.000000 W
PLW1 75.4752953 MHz
=====
CHANNEL f2 =====
CPDPGK2
NUC2 1H
PCPD2 90.00 usec
PLW1 7.88000019 W
PLW2 0.2167001 W
PLW3 0.11550001 W
SFO2 300.1312005 MHz
=====
F2 - Processing Parameters
SI 32768
SF 75.467448 MHz
WWD EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40

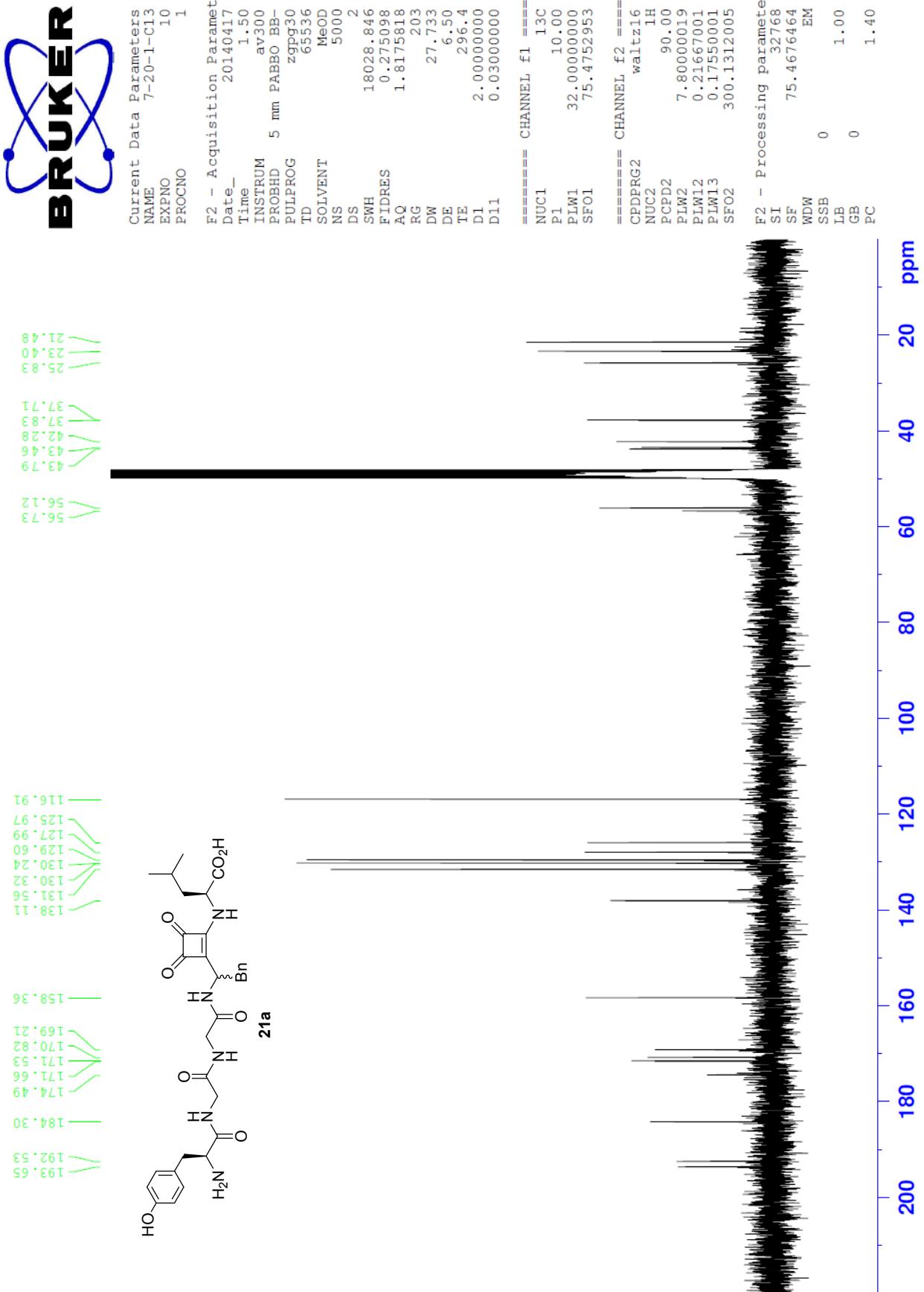
```

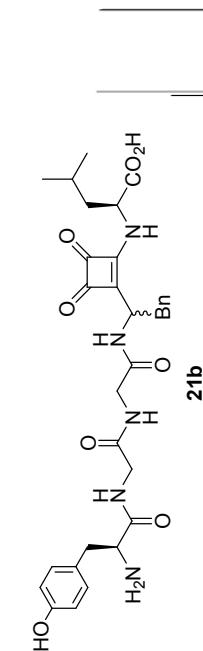


F:\FmocGlySQPhe(CO₂Bu)OPr.als

DFILE F:\FmocGlySQHe(CO2Bu)OPr.a

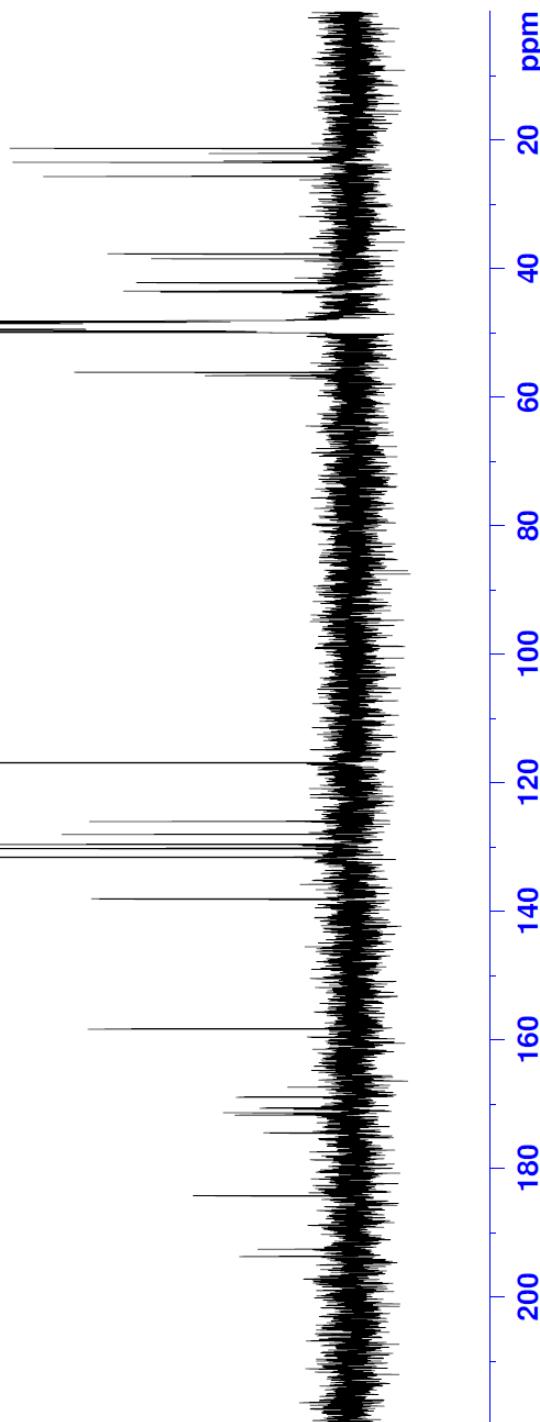



20



0.965
0.944
0.916
0.896
1.717
1.735
1.926
2.952
2.973
2.999
3.115
3.137
3.183
3.217
3.696
3.802
3.817
3.921
3.961
3.976
4.034
4.056
4.081
4.745
4.774
4.794
5.127
5.149
5.166
5.177
6.750
6.778
7.084
7.112
7.186
7.203
7.228
7.248
7.260
7.273
1.09
1.17
1.32
1.46
2.00
2.03
2.26
0.99
0.79
1.20
3.26
1.32
1.17
2.60
3.26
0.63
0.45
0.33

BRUKER


116.86
 125.99
 128.00
 129.57
 130.14
 130.21
 131.54
 138.05
 143.44
 147.67
 150.67
 158.28
 164.25
 168.89
 170.60
 171.33
 174.44
 192.58
 193.69

Current Data Parameters
 NAME 7-20-2-C13
 EXPNO 10
 PROCNO 1

F2 - Acquisition Parameters
 Date_ 20110417
 Time_ 7.16
 INSTRUM av300
 PROBHD 5 mm PABBO BB-
 PULPROG zgpp30
 TD 65536
 SOLVENT MeOD
 NS 5000
 DS 18028.846
 SWH 0.275098
 FIDRES Hz
 AQ 1.8175818
 RG 203
 DW 27.733
 usec
 DE 6.50
 usec
 TE 296.3
 K
 D1 2.0000000
 sec
 D11 0.0300000
 sec

===== CHANNEL f1 ======
 NUC1 13C
 P1 10.00 usec
 PLW1 32.0000000 W
 SF01 75.4752953 MHz

===== CHANNEL f2 ======
 CPDPRG2
 NUC2 1H
 PCPD2 90.00 usec
 PLW2 7.80000019 W
 PLW12 0.21667001 W
 PLW13 0.17550001 W
 SF02 300.1312005 MHz

