2-Hydroxyarylimidazole based Colorimetric and Ratiometric Fluoride ion Sensors

Dhirendra Kumar and K. R. Justin Thomas

^a Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247 667, India. krjtfcy8@iitr.ac.in, krjtiitk@gmail.com

Supplementary Information Contents

Fig. S1. Absorption spectra of 4a after addition of 20 equiv. of different anions recorded in ACN	S3
Fig. S2. Absorption spectra of $4\mathbf{a} + F^-$ (20 equiv.) on addition of different amount of MeOH recorded in ACN	S3
Fig. S3. Absorption spectra of $4\mathbf{a} + AcO^-$ (20 equiv.) on addition of different amount of MeOH recorded in ACN	S4
Fig. S4. Absorption spectra of 4a after addition of 20 equiv. of different anions recorded in MeOH+ACN ($1\% \text{ v/v}$)	S4
Fig. S5. Absorption spectra of 4b after addition of 20 equiv. of different anions recorded in ACN	S5
Fig. S6. Absorption spectra of $\mathbf{4b} + F^-$ (20 equiv.) on addition of different amount of MeOH recorded in ACN	S5
Fig. S7. Absorption spectra of $4\mathbf{b} + AcO^{-}$ (20 equiv.) on addition of different amount of MeOH recorded in ACN	S6
Fig. S8. Absorption spectra of 4b after addition of 20 equiv. of different anions recorded in MeOH+ACN ($4\% \text{ v/v}$)	S 6
Fig. S9. Emission spectra of 4a after addition of 20 equiv. of different anions recorded in ACN	S7
Fig. S10. Emission spectra of $4a + F^-$ (20 equiv.) on addition of different amount of MeOH recorded in ACN	S7
Fig. S11. Emission spectra of $4a + AcO^-$ (20 equiv.) on addition of different amount of MeOH recorded in ACN	S 8
Fig. S12. Emission spectra of 4a after addition of 20 equiv. of different anions recorded in MeOH+ACN ($1\% v/v$)	S 8
Fig. S13. Emission spectra of 4b after addition of 20 equiv. of different anions recorded in ACN	S9
Fig. S14. Emission spectra of $\mathbf{4b} + F^{-}$ (20 equiv.) on addition of different amount of MeOH recorded in ACN	S9
Fig. S15. Emission spectra of $4\mathbf{b} + AcO^-$ (20 equiv.) on addition of different amount of MeOH recorded in ACN	S10
Fig. S16. Emission spectra of 4b after addition of 20 equiv. of different anions	S10

recorded in MeOH+ACN (4% v/v)	
Fig. S17. Job's plot for $4a + F^{-}$; [receptor] + [guest] = 2×10^{-5} M	S11
Fig. S18. Job's plot for $4a + AcO^{-}$; [receptor] + [guest] = 2×10^{-5} M	S11
Fig. S19. Job's plot for 4b + F^{-} ; [receptor] + [guest] = 2 × 10 ⁻⁵ M	S12
Fig. S20. Job's plot for 4b + AcO^{-} ; [receptor] + [guest] = 2 × 10 ⁻⁵ M	S12
Fig. S21. IR of 4a only (top) and 4a + TBAF (bottom)	S13
Fig. S22. IR of 4b only (top) and 4b + TBAF (bottom)	S14
Detection limit calculation	S15
Fig. S23. ¹ H NMR spectra of 2 recorded in CDCl ₃	S16
Fig. S24. ¹³ C NMR spectra of 2 recorded in CDCl ₃	S16
Fig. S25. ¹ H NMR spectra of 3 recorded in CDCl ₃	S17
Fig. S26. ¹³ C NMR spectra of 3 recorded in CDCl ₃	S17
Fig. S27. ¹ H NMR spectra of 4a recorded in DMSO- d_6	S18
Fig. S28. ¹³ C NMR spectra of 4a recorded in CDCl ₃	S18
Fig. S29. ¹ H NMR spectra of 4b recorded in DMSO- d_6	S19
Fig. S30. 13 C NMR spectra of 4b recorded in CDCl ₃	S19

Fig. S1. Absorption spectra of 4a after addition of 20 equiv. of different anions recorded in ACN

Fig. S2. Absorption spectra of $4a + F^{-}$ (20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S3. Absorption spectra of $4a + AcO^-$ (20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S4. Absorption spectra of 4a after addition of 20 equiv. of different anions recorded in MeOH+ACN (1% v/v)

Fig. S5. Absorption spectra of 4b after addition of 20 equiv. of different anions recorded in ACN

Fig. S6. Absorption spectra of $4\mathbf{b} + F^{-}$ (20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S7. Absorption spectra of $4\mathbf{b} + AcO^{-}$ (20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S8. Absorption spectra of 4b after addition of 20 equiv. of different anions recorded in MeOH+ACN (4% v/v)

Fig. S9. Emission spectra of 4a after addition of 20 equiv. of different anions recorded in ACN

Fig. S10. Emission spectra of $4a + F^{-}$ (20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S11. Emission spectra of $4a + AcO^-$ (20 equiv.) on addition of different amount of MeOH recorded in ACN

Figure S12 Emission spectra of 4a after addition of 20 equiv. of different anions recorded in MeOH+ACN (1% v/v)

Fig. S13. Emission spectra of 4b after addition of 20 equiv. of different anions recorded in ACN

Fig. S14. Emission spectra of $4\mathbf{b} + F^{-}$ (20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S15. Emission spectra of $4\mathbf{b} + AcO^-$ (20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S16. Emission spectra of 4b after addition of 20 equiv. of different anions recorded in MeOH+ACN (4% v/v)

Figure S17. Job's plot for $4a + F^{-}$; [receptor] + [guest] = 2×10^{-5} M

Fig. S18. Job's plot for $4a + AcO^{-}$; [receptor] + [guest] = 2×10^{-5} M

Fig. S19. Job's plot for $4b + F^{-}$; [receptor] + [guest] = 2×10^{-5} M

Fig. S20. Job's plot for **4b** + AcO^{-1} ; [receptor] + [guest] = 2 × 10⁻⁵ M

Fig. S21 IR of 4a only (top) and 4a + TBAF (bottom)

Fig. S22. IR of 4b only (top) and 4b + TBAF (bottom)

Detection Limit Calculation

The limit of detection (LOD) of **4a** and **4b** in absorption as well in emission for the F⁻ anion was estimated from the following equation

$$LOD = \frac{k \times \sigma}{slope}$$

where k = 3, and σ is standard deviation.

The calibration plot of absorption and emission for the **4a** and **4b** are presented below which provides the value of standard deviation (σ) and slope. Thus using the above formula we got the LOD for F⁻ anion in absorption and emission spectra.

LOD of 4a: 0.049 µM in absorption and 0.030 µM in emission.

LOD of **4b**: 0.042 μ M in absorption and 0.041 μ M in emission.

Fig. S28. ¹³C NMR spectra of 4a recorded in CDCl₃

Fig. S30. ¹³C NMR spectra of 4b recorded in CDCl₃