2-Hydroxyarylimidazole based Colorimetric and Ratiometric Fluoride ion Sensors

Dhirendra Kumar and K. R. Justin Thomas
${ }^{a}$ Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology
Roorkee, Roorkee - 247 667, India. krjtfcy8@iitr.ac.in, krjtiitk@gmail.com

Supplementary Information Contents

Fig. S1. Absorption spectra of $\mathbf{4 a}$ after addition of 20 equiv. of different anions recorded in ACN

Fig. S2. Absorption spectra of $\mathbf{4 a}+F^{-}$(20 equiv.) on addition of different amount of \quad S3
MeOH recorded in ACN
Fig. S3. Absorption spectra of $\mathbf{4 a}+\mathrm{AcO}^{-}$(20 equiv.) on addition of different amount
of MeOH recorded in ACN
Fig. S4. Absorption spectra of $\mathbf{4 a}$ after addition of 20 equiv. of different anions S4 recorded in $\mathrm{MeOH}+\mathrm{ACN}(1 \% \mathrm{v} / \mathrm{v})$

Fig. S5. Absorption spectra of $\mathbf{4 b}$ after addition of 20 equiv. of different anions S5
recorded in ACN
Fig. S6. Absorption spectra of $\mathbf{4 b}+F^{-}$(20 equiv.) on addition of different amount of S5 MeOH recorded in ACN

Fig. S7. Absorption spectra of $\mathbf{4 b}+\mathrm{AcO}^{-}$(20 equiv.) on addition of different amount of MeOH recorded in ACN
Fig. S8. Absorption spectra of $\mathbf{4 b}$ after addition of 20 equiv. of different anions
recorded in $\mathrm{MeOH}+\mathrm{ACN}(4 \% \mathrm{v} / \mathrm{v})$
Fig. S9. Emission spectra of $\mathbf{4 a}$ after addition of 20 equiv. of different anions recorded \quad S7 in ACN

Fig. S10. Emission spectra of $\mathbf{4 a}+F^{-}$(20 equiv.) on addition of different amount of
MeOH recorded in ACN
Fig. S11. Emission spectra of $\mathbf{4 a}+\mathrm{AcO}^{-}$(20 equiv.) on addition of different amount $\quad \mathrm{S} 8$ of MeOH recorded in ACN

Fig. S12. Emission spectra of $\mathbf{4 a}$ after addition of 20 equiv. of different anions recorded \quad S8 in $\mathrm{MeOH}+\mathrm{ACN}(1 \% \mathrm{v} / \mathrm{v})$
Fig. S13. Emission spectra of $\mathbf{4 b}$ after addition of 20 equiv. of different anions S9
recorded in ACN

Fig. S14. Emission spectra of $\mathbf{4 b}+F^{-}$(20 equiv.) on addition of different amount of \quad S9
MeOH recorded in ACN
$\begin{array}{ll}\begin{array}{l}\text { Fig. S15. Emission spectra of } \mathbf{4 b}+\mathrm{AcO}^{-} \\ \text {of } \mathrm{MeOH} \text { recorded in } \mathrm{ACN}\end{array} & \text { (20 equiv.) on addition of different amount }\end{array}$
Fig. S16. Emission spectra of 4b after addition of 20 equiv. of different anions S10
recorded in $\mathrm{MeOH}+\mathrm{ACN}(4 \% \mathrm{v} / \mathrm{v})$
Fig. S17. Job's plot for $\mathbf{4 a}+F^{-} ;$[receptor] + [guest] $=2 \times 10^{-5} \mathrm{M} \quad$ S11
Fig. S18. Job's plot for $\mathbf{4 a}+\mathrm{AcO}^{-}$; [receptor] + [guest] $=2 \times 10^{-5} \mathrm{M} \quad$ S11
Fig. S19. Job's plot for $\mathbf{4 b}+F^{-} ;[$receptor $]+[$guest $]=2 \times 10^{-5} \mathrm{M} \quad$ S12
Fig. S20. Job's plot for $\mathbf{4 b}+\mathrm{AcO}^{-}$; [receptor] $+[$guest $]=2 \times 10^{-5} \mathrm{M} \quad \mathrm{S} 12$
Fig. S21. IR of 4a only (top) and $\mathbf{4 a}+$ TBAF (bottom) S13
Fig. S22. IR of $\mathbf{4 b}$ only (top) and $\mathbf{4 b}+$ TBAF (bottom) S14
Detection limit calculation S15
Fig. S23. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ recorded in $\mathrm{CDCl}_{3} \quad$ S16
Fig. S24. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}$ recorded in $\mathrm{CDCl}_{3} \quad$ S16
Fig. S25. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}$ recorded in $\mathrm{CDCl}_{3} \quad$ S17
Fig. S26. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3}$ recorded in $\mathrm{CDCl}_{3} \quad$ S17
Fig. S27. ${ }^{1} \mathrm{H}$ NMR spectra of 4a recorded in DMSO- $d_{6} \quad$ S18
Fig. S28. ${ }^{13} \mathrm{C}$ NMR spectra of 4a recorded in $\mathrm{CDCl}_{3} \quad$ S18
Fig. S29. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 b}$ recorded in DMSO- $d_{6} \quad$ S19
Fig. S30. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 b}$ recorded in $\mathrm{CDCl}_{3} \quad$ S19

Fig. S1. Absorption spectra of $\mathbf{4 a}$ after addition of 20 equiv. of different anions recorded in ACN

Fig. S2. Absorption spectra of $\mathbf{4 a}+F^{-}$(20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S3. Absorption spectra of $\mathbf{4 a}+\mathrm{AcO}^{-}$(20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S4. Absorption spectra of $\mathbf{4 a}$ after addition of 20 equiv. of different anions recorded in $\mathrm{MeOH}+\mathrm{ACN}(1 \% \mathrm{v} / \mathrm{v})$

Fig. S5. Absorption spectra of $\mathbf{4 b}$ after addition of 20 equiv. of different anions recorded in ACN

Fig. S6. Absorption spectra of $\mathbf{4 b}+F^{-}$(20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S7. Absorption spectra of $\mathbf{4 b}+\mathrm{AcO}^{-}$(20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S8. Absorption spectra of $\mathbf{4 b}$ after addition of 20 equiv. of different anions recorded in $\mathrm{MeOH}+\mathrm{ACN}(4 \% \mathrm{v} / \mathrm{v})$

Fig. S9. Emission spectra of $\mathbf{4 a}$ after addition of 20 equiv. of different anions recorded in ACN

Fig. S10. Emission spectra of $\mathbf{4 a}+F^{-}$(20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S11. Emission spectra of $\mathbf{4 a}+\mathrm{AcO}^{-}$(20 equiv.) on addition of different amount of MeOH recorded in ACN

Figure S12 Emission spectra of $\mathbf{4 a}$ after addition of 20 equiv. of different anions recorded in $\mathrm{MeOH}+\mathrm{ACN}(1 \% \mathrm{v} / \mathrm{v})$

Fig. S13. Emission spectra of 4b after addition of 20 equiv. of different anions recorded in ACN

Fig. S14. Emission spectra of $\mathbf{4 b}+F^{-}$(20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S15. Emission spectra of $\mathbf{4 b}+\mathrm{AcO}^{-}$(20 equiv.) on addition of different amount of MeOH recorded in ACN

Fig. S16. Emission spectra of 4b after addition of 20 equiv. of different anions recorded in $\mathrm{MeOH}+\mathrm{ACN}(4 \% \mathrm{v} / \mathrm{v})$

Figure S17. Job's plot for $\mathbf{4 a}+F^{-} ;[$receptor $]+[$guest $]=2 \times 10^{-5} \mathrm{M}$

Fig. S18. Job's plot for $\mathbf{4 a}+\mathrm{AcO}^{-} ;[$receptor $]+[$guest $]=2 \times 10^{-5} \mathrm{M}$

Fig. S19. Job's plot for $\mathbf{4 b}+F^{-} ;[$receptor $]+[$guest $]=2 \times 10^{-5} \mathrm{M}$

Fig. S20. Job's plot for $\mathbf{4 b}+\mathrm{AcO}^{-} ;[$receptor $]+[$guest $]=2 \times 10^{-5} \mathrm{M}$

Fig. S21 IR of $\mathbf{4 a}$ only (top) and $\mathbf{4 a}+$ TBAF (bottom)

Fig. S22. IR of 4b only (top) and $\mathbf{4 b}+$ TBAF (bottom)

Detection Limit Calculation

The limit of detection (LOD) of $\mathbf{4 a}$ and $\mathbf{4 b}$ in absorption as well in emission for the F^{-} anion was estimated from the following equation

$$
L O D=\frac{k \times \sigma}{\text { slope }}
$$

where $k=3$, and σ is standard deviation.
The calibration plot of absorption and emission for the $\mathbf{4 a}$ and $\mathbf{4 b}$ are presented below which provides the value of standard deviation (σ) and slope. Thus using the above formula we got the LOD for F^{-}anion in absorption and emission spectra.

LOD of $4 \mathbf{a}: 0.049 \mu \mathrm{M}$ in absorption and $0.030 \mu \mathrm{M}$ in emission.
LOD of $\mathbf{4 b}: 0.042 \mu \mathrm{M}$ in absorption and $0.041 \mu \mathrm{M}$ in emission.

Fig. S23. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ recorded in CDCl_{3}

Fig. S24. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}$ recorded in CDCl_{3}

Fig. S25. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}$ recorded in CDCl_{3}

Fig. S26. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3}$ recorded in CDCl_{3}

Fig. S27. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}$ recorded in DMSO- d_{6}

Fig. S28. ${ }^{13} \mathrm{C}$ NMR spectra of 4a recorded in CDCl_{3}

Fig. S29. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 b}$ recorded in DMSO- d_{6}

Fig. S30. ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 b}$ recorded in CDCl_{3}

