Supporting Information

K₂CO₃-mediated, direct C–H bond selenation and thiolation of 1,3,4-oxadiazoles in the absence of metal catalyst: An eco-friendly approach

Jamal Rafique,^a Sumbal Saba,^a Alisson R Rosário,^a Gilson Zeni^b and Antonio L. Braga^{*a}

^{*a*} Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC-Brazil. Fax: + 55 48 3721 6427; Tel: + 55 48 37216427

^b Departamento de Química, Universidade Federal de Santa Maria, Santa Maria 97105-900, RG -Brazil

e-mail: <u>albraga@qmc.ufsc.br</u>

Table of Contents

I.	Materials and Methods	S2
II.	General Procedure for synthesis of chalcogenated oxadiazoles	S2
III.	Control Experiments for the Study of Mechanism	S3
IV.	Procedure for the synthesis of selenated oxadiazole at 10 mmole scale	S4
V.	Characterization data of compounds 3a-y and 5a-b	S4
VI.	References	S12
VII.	NMR Spectra	S13

I. Materials and Methods

Proton nuclear magnetic resonance spectra (¹H NMR) were obtained at 200 MHz on a Bruker AC-200 NMR spectrometer or at 400 MHz on a Varian AS-400 NMR spectrometer. Spectra were recorded in CDCl₃ solutions. Chemical shifts are reported in ppm, referenced to the solvent peak of CDCl₃ or tetramethylsilane (TMS) as the external reference. Data are reported as follows: chemical shift (δ), multiplicity, coupling constant (J) in Hertz and integrated intensity. Carbon-13 nuclear magnetic resonance spectra (¹³C NMR) were obtained either at 50 MHz on a Bruker AC-200 NMR spectrometer or at 100 MHz on a Varian AS-400 NMR spectrometer. Spectra were recorded in CDCl₃ solutions. Chemical shifts are reported in ppm, referenced to the solvent peak of CDCl₃. Abbreviations to denote the multiplicity of a particular signal are: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet) and m (multiplet). Selenium-77 nuclear magnetic resonance spectra (⁷⁷Se NMR) at 38.14 MHz on a Bruker AC-200 NMR spectrometer. Spectra were recorded in CDCl₃ solutions. Chemical shifts are reported in ppm, referenced to diphenyl diselenide as the external reference (463.15 ppm). High resolution mass spectra were recorded on a Bruker micrOTOF-O II ESI mass spectrometer equipped with an automatic syringe pump for sample injection. Infrared spectra were recorded on a Bruker Optics Alpha benchtop FT-IR spectrometer and are reported in frequency of absorption (cm⁻¹). The melting points were determined in a Microquimica MQRPF-301 digital model equipment with heating plate. Column chromatography was performed using Silica Gel (230-400 mesh) following the methods described by Still.¹ Thin layer chromatography (TLC) was performed using Merck Silica Gel GF₂₅₄, 0.25 mm thickness. For visualization, TLC plates were either placed under ultraviolet light, or stained with iodine vapor and acidic vanillin. Most reactions were monitored by TLC for disappearance of starting material.

Unless otherwise stated, all reactions were carried out in open atmosphere; all reagents and solvents were obtained from commercial sources and used without any further purification. Oxadiazoles **1a-m**,^{2,3} diselenides **2a-m**⁴ and disulfides **4a-b**⁵ were prepared according to the reported methods. Potassium carbonate (99.997%) for controlled reaction was purchased from Sigma-Aldrich. Reactions under inert atmosphere were conducted in flame-dried or oven dried glassware equipped with tightly fitted rubber septa and under a positive atmosphere of dry argon. Reagents and solvents were handled using standard syringe techniques. Temperatures above room temperature were maintained by use of a mineral oil bath with an electrically heated coil connected to a Variac speed controller.

II. General Procedure for the synthesis of chalcogenated oxdiazoles

In a Schlenck tube, containing DMSO (1 mL), the appropriate oxadiazole 1 (0.5 mmol), diorganyl dichalcogenide 2 or 4 (0.26 mmol), was added K_2CO_3 (0.5 mmol). The reaction was heated to 100 °C in an oil bath for 10 h. After this, the mixture was diluted with ethyl acetate (20 mL) and washed with a saturated solution of NaCl (20 mL). The organic phase was separated, dried over MgSO₄, and concentrated under vacuum. The residue was purified by crystallization using hexane/methanol system or by flash chromatography eluted with mixture of hexane/acetate (95:5).

III. Control Experiments for the Study of Mechanism

In a Schlenck tube, containing DMSO (1 mL), the oxadiazole **1a** (0.5 mmol), diphenyl diselenide **2a** (0.26 mmol), was added K_2CO_3 (0.5 mmol) and TEMPO (0.5 mmol). The reaction was heated to 100 °C in an oil bath for 10 h. After this, the mixture was diluted with ethyl acetate (20 mL) and washed with a saturated solution of NaCl (20 mL). The organic phase was separated, dried over MgSO₄, and concentrated under vacuum. The residue was purified by flash chromatography and eluted with mixture of hexane/acetate (95:5). Yield: 74%.

b) Reaction between oxadiazole 1a and phenylselenium bromide

In a Schlenck tube, containing DMSO (1 mL), the oxadiazole **1a** (0.5 mmol), phenylselenium bromide (0.5 mmol), was added K_2CO_3 (0.5 mmol). The reaction was heated to 100 °C in an oil bath for 10 h. After this, the mixture was diluted with ethyl acetate (20 mL) and washed with a saturated solution of NaCl (20 mL). The organic phase was separated, dried over MgSO₄, and concentrated under vacuum. The residue was purified by flash chromatography and eluted with mixture of hexane/acetate (95:5). Yield: 71%.

c) Reaction between oxadiazole 1a and diselenide 2a under inert atmosphare

In a Schlenck tube, under argon,, containing DMSO (1 mL), the oxadiazole **1a** (0.5 mmol), diphenyl diselenide **2a** (0.26 mmol), was added K_2CO_3 (0.5 mmol). The reaction was heated to 100 °C in an oil bath for 10 h. After this, the mixture was diluted with ethyl acetate (20 mL) and washed with a saturated solution of NaCl (20 mL). The organic phase was separated, dried over MgSO₄, and concentrated under vacuum. The residue was purified by flash chromatography and eluted with mixture of hexane/acetate (95:5). Yield: 76%.

d) Control addition for diphenyl diselenide 2a

In a Schlenck tube, containing DMSO (1 mL), the oxadiazole **1a** (0.5 mmol), was added K_2CO_3 (0.5 mmol). The reaction was heated to 100 °C in an oil bath. After 10 minutes diphenyl diselenide **2a** (0.26 mmol) was added and the reaction mixture was allowed for 10 h. After this, the mixture was diluted with ethyl acetate (20 mL) and washed with a saturated solution of NaCl (20 mL). The organic phase was separated, dried over MgSO₄, and concentrated under vacuum. The residue was purified by flash chromatography and eluted with mixture of hexane/acetate (95:5). Yield: 89%.

IV. Procedure for the synthesis of selenated oxadiazole in 10 mmole scale

In a Schlenck tube, containing DMSO (25 mL), the oxadiazole **1** (10 mmol), diselenide **2a** (5.05 mmol), was added K_2CO_3 (10 mmol). The reaction was heated to 100 °C in an oil bath for 12 h. After this, the mixture was diluted with ethyl acetate (100 mL) and washed with a saturated solution of NaCl (30 mL x 3). The organic phase was separated, dried over MgSO₄, and concentrated under vacuum. The residue was purified by flash chromatography and eluted with mixture of hexane/acetate (95:5). Yield 82 %.

V. Characterization data of compounds 3a-3y and 5a-5b

2-(4-methylphenyl)-5-(phenylselanyl)-1,3,4-oxadiazole (3a).

Yield: 86%; Yellow solid; mp: 84 – 85 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.82 (d, *J* = 8.2 Hz, 2H), 7.78 – 7.70 (m, 2H), 7.42 – 7.34 (m, 3H), 7.24 (d, *J* = 8.2 Hz, 2H), 2.38 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ = 167.3, 155.7, 142.4, 134.9, 129.8, 129.7, 129.6, 126.7, 124.4, 120.7, 21.7.; ⁷⁷Se NMR (38.14 MHz, CDCl₃) δ = 365.34.; IR (KBr): 3050, 2881, 2761, 1614, 1482, 1356, 1256, 1142, 1085, 1025, 964, 835, 734, 642 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₅H₁₃N₂OSe [M + H]⁺ 317.0188, found: 317.0193.

2-(4-methylphenyl)-5-((4-methylphenyl)selanyl)-1,3,4-oxadiazole (3b).

Yield: 88%; Yellow solid; mp: 82 – 84 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.76 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.20 – 7.09 (m, 4H), 2.32 (s, 3H), 2.29 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.4, 156.2, 142.4, 140.1, 135.4, 130.7, 129.8, 126.9, 120.9, 120.7, 21.8, 21.4.; IR (KBr): 3056, 2922, 2853, 1652, 1558, 1478, 1362, 1209, 136, 1066, 1022, 950, 836, 805, 730, 668 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₅H C₁₆H₁₅N₂OSe [M + H]⁺ 331.0348, found: 331.0352.

2-(4-methylphenyl)-5-((4-methoxyphenyl)selanyl)-1,3,4-oxadiazole (3c).

Yield: 96%; Yellow solid; mp: 74 – 75 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.74 (d, *J* = 8.1 Hz, 2H), 7.62 (d, *J* = 8.7 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 3.74 (s, 3H), 2.31 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.2, 161.0, 156.5, 142.3, 137.6, 137.4, 129.7, 126.7, 120.8, 115.8, 115.5, 114.0, 55.4, 21.6.; IR (KBr): 3098, 3065, 2994, 2925, 2842, 1658 1610, 1575, 1478, 1297, 1268, 1184, 1156, 1036, 954, 830, 740, 662 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₆H₁₅N₂O₂Se [M + H]⁺ 347.0294, found: 347.0291.

2-(4-methylphenyl)-5-((2-methoxyphenyl)selanyl)-1,3,4-oxadiazole (3d).

Yield: 88%; Yellow solid; mp: 69 – 71 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.88 (d, *J* = 8.3 Hz, 2H), 7.57 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.40 – 7.33 (m, 1H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.98 – 6.90 (m, 2H), 3.87 (s, 3H), 2.41 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.5, 157.6, 155.2, 142.5, 133.7, 130.4, 129.8, 126.9, 122.1, 120.9, 115.2, 111.3, 56.2, 21.7.; IR (KBr): 3104, 3038, 2990,

2861, 1610, 1594, 1484, 1439, 1344, 1258, 1193, 1127, 1063, 964, 835, 840, 803, 766, 738, 662, 605 cm⁻¹.; ESI-HRMS m/z: calcd. for C₁₆H₁₅N₂O₂Se [M + H]⁺ 347.0294, found: 347.0297.

2-(4-methylphenyl 5-((2-methylphenyl)selanyl)-1,3,4-oxadiazole (3e).

Yield: 88%; Yellow solid; mp: 58 – 59 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.0 Hz, 2H), 7.39 – 7.16 (m, 5H), 2.55 (s, 3H), 2.39 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.3, 155.7, 142.4, 141.8, 136.5, 130.9, 130.3, 129.8, 127.2, 126.8, 125.5, 120.8, 23.0, 21.7.; IR (KBr): 3062, 3032, 2955, 2924, 2868, 1698, 1652, 1558, 1457, 1435, 1337, 1260, 1156, 1064, 950, 848, 821, 728, 688 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₆H₁₅N₂OSe [M + H]⁺ 331.0345, found: 331.0346.

2-(4-methylphenyl)-5-((4-chlorophenyl)selanyl)-1,3,4-oxadiazole (3f).

Yield: 82%; Yellow solid; mp: 82 – 83 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.77 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 2.33 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.6, 155.4, 142.6, 136.4, 136.3, 130.1, 129.8, 126.9, 122.4, 120.7, 21.7.; IR (KBr): 3076, 3045, 2914, 2850, 1629, 1566, 1482, 1344, 1303, 1292, 1272, 1189, 1163, 1115, 1101, 1078, 1015, 993, 964, 838, 738, 677, 630 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₅H₁₂ClN₂OSe [M + H]⁺ 350.9796, found: 350.9790.

2-(4-methylphenyl)-5-((3-(trifluoromethyl)phenyl)selanyl) -1,3,4-oxadiazole (3g).

Yield: 70%; Yellow solid; mp: 60 – 61 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.97 (s, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 2H), 2.34 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.7, 154.8, 142.2, 138.2, 132.26 (d, *J*_{C-F} = 32.9 Hz), 131.59 (q, *J*_{C-F} = 3.8 Hz),130.3, 129.9, 126.9, 126.53 (q, *J*_{C-F} = 3.7 Hz),125.5, 123.49 (q, *J*_{C-F} = 272.9 Hz), 120.68, 21.7.; IR (KBr): 3100, 3052, 2992, 2915, 2881, 1629, 1564, 1478, 1431, 1322, 1223, 1152, 1110, 803, 713, 679, 662 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₆H₁₂F₃N₂OSe [M + H]⁺ 385.0062, found: 385.0066.

2-(4-methylphenyl)-5-((4-fluorophenyl)selanyl)-1,3,4-oxadiazole (3h).

Yield: 65%; Yellow solid; mp: 85 – 87 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.2 Hz, 2H), 7.80 – 7.72 (m, 2H), 7.26 (d, *J* = 8.2 Hz, 2H), 7.14 – 7.04 (m, 2H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.4, 163.76 (d, *J*_{C-F} = 250.7 Hz), 155.76, 142.52, 137.66 (d, *J*_{C-F} = 8.4 Hz), 129.79, 126.79, 120.72, 118.84, 117.20 (d, *J*_{C-F} = 22.0 Hz), 21.69.; IR (KBr): 3106, 3165, 2979, 2885, 1692, 1629, 1594, 1492, 1460, 1441, 1322, 1299, 1254, 1152, 1170, 1080, 962, 832, 742, 603 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₅H₁₂FN₂OSe [M + H]⁺ 335.0092, found: 335.0098.

2-(4-methylphenyl)-5-(mesitylselanyl)-1,3,4-oxadiazole (3i).

Yield: 62%; Yellow solid; mp: 62 – 64 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.80 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.01 (s, 2H), 2.56 (s, 6H), 2.39 (s, 3H), 2.30 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.0, 156.2, 143.6, 142.2, 140.6, 129.7, 129.3, 126.7, 122.8, 121.0, 24.5, 21.7, 21.1.; IR (KBr): 3083, 3000, 2952, 2923, 2846, 2831, 1601, 1564, 1513, 1480, 1441, 1333, 1291, 1176, 1127, 1083, 991, 864, 832, 740, 675, 630 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₈H₁₉N₂OSe [M + H]⁺ 359.0658, found: 359.0656.

2-(4-methylphenyl)-5-(naphthalen-1-ylselanyl)-1,3,4-oxadiazole (3j).

Yield: 63%; Yellow solid; mp: 122 – 124 °C. ¹H NMR (200 MHz, CDCl₃) δ = 8.42 (d, *J* = 7.8 Hz, 1H), 8.09 (dd, *J* = 7.2, 1.0 Hz, 1H), 7.95 (d, *J* = 8.3 Hz, 1H), 7.86 (dd, *J* = 7.1, 2.0 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.63 – 7.52 (m, 2H), 7.49 – 7.40 (m, 1H), 7.17 (d, *J* = 8.2 Hz, 2H), 2.34 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.3, 155.6, 142.3, 136.3, 134.4, 131.4, 129.7, 129.6, 128.8, 127.7, 127.6, 126.8, 126.7, 126.7, 126.0, 125.9, 123.4, 120.7, 21.6.; IR (KBr): 3089, 3052, 3023, 2954, 2918, 1629, 1594 1548, 1513, 1480, 1348, 1266, 1174, 1083, 1038, 964, 834, 807, 781, 662 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₉H₁₅N₂OSe [M + H]⁺ 367.0345, found: 367.0346.

2-(4-methylphenyl)-5-(ethylselanyl)-1,3,4-oxadiazole (3k).

Yield: 80%; Yellow solid; mp: 41 – 42 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.90 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 3.33 (q, *J* = 7.4 Hz, 2H), 2.41 (s, 3H), 1.65 (t, *J* = 7.4 Hz, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.0, 156.2, 142.2, 129.7, 126.7, 121.0, 32.2, 22.2, 21.6, 16.0.; IR (KBr): 3055, 3046, 2977, 2959, 2916,2870, 2863, 1684, 1615, 1558, 1464, 1331, 1238, 1184, 1062, 954, 834, 795, 672, 668, 613 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₁H₁₃N₂OSe [M + H]⁺ 269.0188, found: 269.0197.

2-(4-methylphenyl)-5-(butylselanyl)-1,3,4-oxadiazole (3l).

Yield: 81%; Yellow solid; mp: 58 – 60 °C. ¹H NMR (200 MHz, CDCl₃) δ = 8.05 – 7.79 (m, 2H), 7.35 – 7.22 (m, 2H),), 3.33 (t, *J* = 7.5 Hz, 2H), 2.40 (s, 3H), 1.99 – 1.80 (m, 2H), 1.58 – 1.39 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 166.8, 156.2, 142.0, 129.6, 126.5, 120.8, 32.2, 28.0, 22.7, 21.5, 13.4.; IR (KBr): 3049, 3002, 2972, 2948, 2883, 2861,1658, 1629, 1572, 1513, 1480, 1321, 1225, 1176, 1085, 991, 834, 818, 736, 701, 660 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₃H₁₇N₂OSe [M + H]⁺ 297.0501, found: 297.0501.

2-(4-chlorophenyl)-5-(thiophen-2-ylselanyl)-1,3,4-oxadiazole (3m).

Yield: 79%; Yellow solid; mp: 68 – 69 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.81 (d, *J* = 8.3 Hz, 2H), 7.57 – 7.46 (m, 1H), 7.30 – 7.21 (m, 3H), 7.13 – 6.98 (m, 1H), 2.37 (s, 3H).; ¹³C (100 MHz, CDCl₃) δ = 167.2, 155.5, 142.2, 138.6, 133.7, 131.9, 129.7, 128.4, 126.7, 120.6, 21.68.; IR (KBr): 3055, 2998, 2921, 2846, 1612, 1566, 1460, 1403, 1304, 1299, 1176, 1091, 1025, 972, 928, 836, 813, 722, 709 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₃H₁₁SN₂OSe [M + H]⁺ 322.9751, found: 322.9755.

2-phenyl-5-(phenylselanyl)-1,3,4-oxadiazole (3n).

Yield: 84%; Yellow solid; mp: 51 – 52 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.96 – 7.91 (m, 2H), 7.81 – 7.70 (m, 2H), 7.49 – 7.37 (m, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ = 167.2, 156.2, 135.0, 131.8, 129.8, 129.6, 129.0, 126.8, 124.2, 123.4.; IR (KBr): 3094, 3055, 2977, 2920, 1546, 1484, 1463, 1335, 1280, 1158, 1111, 1061, 1022, 982, 782, 741, 688 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₄H₁₁N₂OSe [M + H]⁺ 303.0031, found: 303.0028.

2-(4-chlorophenyl)-5-(phenylselanyl)-1,3,4-oxadiazole (30).

Yield: 79%; Yellow solid; mp: 85 – 87 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.82 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 7.7 Hz, 2H), 7.40 – 7.31 (m, 5H).; ¹³C NMR (100 MHz, CDCl₃) δ = 166.3, 162.5, 156.5, 138.0, 135.1, 129.8, 129.7, 129.4, 128.0, 121.9.; IR (KBr): 3064, 3044, 2917, 1655, 1613, 1553, 1482, 1464, 1384, 1293, 1189, 1084, 1067, 953, 817, 725, 669, 623 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₄H₁₀ClN₂OSe [M + H]⁺ 336.9639, found: 336.9638.

2-(4-methoxyphenyl)-5-(phenylselanyl)-1,3,4-oxadiazole (3p).

Yield: 95%; Yellow solid; mp: 93 – 95 °C. ¹H NMR (200 MHz, CDCl₃) δ = 8.01 – 7.63 (m, 4H), 7.43 – 7.36 (m, 2H), 7.03 – 6.87 (m, 2H), 3.85 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.3, 162.5, 155.3, 134.9, 129.9, 129.6, 128.7, 124.6, 116.1, 114.5, 55.5.; IR (KBr): 3059, 3034, 2985, 2952, 1652, 1609, 1553, 1541, 1498, 1464, 1337, 1306, 1255, 1178, 1150, 1062, 1017, 958, 835, 738, 687 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₅H₁₃N₂O₂Se [M + H]⁺ 333.0137, found: 317.0133.

2-(4-(tert-butyl)phenyl)-5-(phenylselanyl)-1,3,4-oxadiazole (3q).

Yield: 96%; Yellow solid; mp: 59 – 60 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.88 (dt, *J* = 8.7, 1.3 Hz, 2H), 7.82 – 7.66 (m, 2H), 7.51 – 7.35 (m, 5H), 1.33 (s, 9H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.3, 155.8, 155.5, 135.0, 129.9, 129.6, 126.7, 126.1, 124.4, 120.7, 35.1, 31.1.; IR (KBr): 3089, 3008, 2949, 2923, 2916, 2903, 2860, 1614, 1581, 1565, 1546, 1495, 1463, 1378, 1333, 1265, 1150, 1122, 1107, 1061, 1012, 984, 951, 847, 838, 739, 704, 685 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₈H₁₉N₂OSe [M + H]⁺ 359.0658, found: 359.0659.

2-(2-methoxyphenyl)-5-(phenylselanyl)-1,3,4-oxadiazole (3r).

Yield: 83%; Yellow solid; mp: 63 – 64 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.90 – 7.64 (m, 3H), 7.51 – 7.32 (m, 4H), 7.07 – 6.92 (m, 2H), 3.86 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 165.9,

157.7, 155.8, 135.0, 133.2, 130.2, 129.7, 129.4, 124.5, 120.7, 112.6, 111.9, 55.9.; IR (KBr): 3057, 3020, 2971, 2936, 2836, 1652, 1558, 1495, 1455, 1435, 1413, 1354, 1240, 1178, 1125, 1006, 1004, 915, 842, 770, 738, 689, 666 cm⁻¹.; ESI-HRMS m/z: calcd. for C₁₅H₁₃N₂O₂Se [M + H]⁺ 333.0137, found: 317.0135.

2-(3-methylphenyl)-5-(phenylselanyl)-1,3,4-oxadiazole (3s).

Yield: 85%; Yellow viscous liquid. ¹H NMR (200 MHz, CDCl₃) δ = 7.84 – 7.65 (m, 4H), 7.44 – 7.28 (m, 5H), 2.38 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.3, 156.0, 138.9, 134.9, 132.6, 129.8, 129.5, 128.9, 127.3, 124.3, 123.9, 123.3, 21.3.; IR (KBr): 3020, 2911, 2861, 1610, 1411, 1331, 1278, 1155, 1091, 1020, 968, 832, 735, 642 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₅H₁₃N₂OSe [M + H]⁺ 317.0185, found: 317.0185.

2-(2-methoxy-3-methylphenyl)-5-(phenylselanyl)-1,3,4-oxadiazole (3t).

Yield: 88%; Yellow solid; mp: 59 – 60 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.83 – 7.62 (m, 3H), 7.41 – 7.26 (m, 4H), 7.08 (t, *J* = 7.7 Hz, 1H), 3.61 (s, 3H), 2.32 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 165.7, 156.8, 156.3, 135.3, 134.9, 132.9, 129.8, 129.6, 127.7, 124.2, 124.1, 117.4, 60.9, 15.9.; IR (KBr): 3042, 3021, 2975, 2937, 2861, 2853, 1612, 1604, 1547, 1512, 1488, 1454, 1328, 1310, 1257, 1173, 1155, 1052, 1007, 957, 829, 738, 686 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₆H₁₅N₂O₂Se [M + H]⁺ 347.0294, found: 347.0291.

2-(5-chloro-2-methoxyphenyl)-5-phenylselanyl-1,3,4-oxadiazole (3u).

Yield: 89%; Yellow solid; mp: 56 – 58 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.83 – 7.66 (m, 3H), 7.45 – 7.35 (m, 4H), 6.93 (d, *J* = 8.9 Hz, 1H), 3.83 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 166.2, 164.7, 156.2, 135.0, 134.9, 132.6, 129.6, 129.5, 125.5, 124.1, 113.8, 113.3, 56.2.; IR (KBr): 3060, 3040, 2960, 2928, 2861, 2847, 1652, 1617, 1576, 1558, 1539, 1507, 1497, 1486, 1470, 1456, 1439, 1337, 1272, 1180, 1027, 989, 874, 823, 740, 668 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₅H₁₂ClN₂O₂Se [M + H]⁺ 366.9745, found: 366.9744.

Yield: 92%; Yellow solid; mp: 122 – 125 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.88 – 7.67 (m, 2H), 7.46 – 7.34 (m, 3H), 7.19 (s, 2H), 3.90 (s, 9H).; ¹³C NMR (50 MHz, CDCl₃) δ = 167.1, 155.9, 153.6, 141.1, 134.9, 129.8, 129.6, 124.4, 118.5, 104.1, 61.0, 56.3.; IR (KBr): 3057, 3020, 2971, 2936, 2864, 2830, 1652, 1594, 1558, 1541, 1497, 1456, 1435, 1411, 1354, 1240, 1125, 1005, 862, 842, 742, 666 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₇H₁₇N₂O₄Se [M + H]⁺ 393.0327, found: 393.0321.

2-(furan-2-yl)-5-phenylselanyl-1,3,4-oxadiazole (3w).

Yield: 82%; Yellow solid; mp: 60 – 61 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.83 – 7.69 (m, 2H), 7.61 (bd, J = 1.8 Hz, 1H), 7.45 – 7.35 (m, 3H), 7.09 (d, J = 3.5 Hz, 1H), 6.56 (dd, J = 3.5, 1.8 Hz, 1H).; ¹³C NMR (50 MHz, CDCl₃) δ = 160.0, 155.7, 145.8, 139.1, 135.1, 129.9, 129.7, 124.0, 114.4, 112.2.; IR (KBr): 3133, 3061, 2985, 2928, 1698, 1932, 1560, 1513, 1460, 1448, 1348, 1132, 1081, 949, 900, 826, 748, 689, 675 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₂H₉N₂OSe [M + H]⁺ 292.9824, found: 292.9834.

2-(*n*-propyl)-5-phenylselanyl-1,3,4-oxadiazole (3x).

Yield: 84%; Yellow viscous liquid. ¹H NMR (200 MHz, CDCl₃) δ = 7.82 – 7.61 (m, 2H), 7.46 – 7.30 (m, 3H), 2.78 (t, *J* = 7.4 Hz, 2H), 1.82 – 1.69 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ = 169.5, 155.8, 134.8, 129.7, 129.4, 124.2, 27.1, 19.8, 13.4.; IR (KBr): 3053, 2977, 2959, 2916, 2863, 1661, 1615, 1558, 1505, 1464, 1158, 1062, 1017, 954, 834, 726, 668, 636 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₁H₁₃N₂OSe [M + H]⁺ 269.0188, found: 269.0195.

(1,3-bis(5-phenylselanyl)-1,3,4-oxadiazol-2-yl)benzene (3y).

Yield: 61%; yellow solid; mp: 122 - 124 °C. ¹H NMR (200 MHz, CDCl₃) δ = 8.53 (t, *J* = 1.7 Hz, 1H), 8.12 (dd, *J* = 7.9 Hz, 1.7 Hz, 2H), 7.82 – 7.75 (m, 4H), 7.64 – 7.56 (m, 1H), 7.46 – 7.38 (m, 6H).; ¹³C NMR (50 MHz, CDCl₃) δ = 166.2, 157.1, 135.3, 130.0, 129.9, 129.8, 125.0, 124.7, 124.0.; IR (KBr): 3074, 3045, 2979, 2937, 1648, 1567, 1492, 1465, 1327, 1282, 1159, 1163, 1051, 1028, 981, 788, 734, 668 cm⁻¹.; ESI-HRMS *m*/*z*: calcd. for C₂₂H₁₅N₄O₂Se₂ [M + H]⁺ 526.9522, found: 596.9519.

2-(4-Methylphenyl)-5-(phenylthio)-1,3,4-oxadiazole (5a).

Yield: 55%; white solid; mp: 68 – 69 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.69 (d, *J* = 8.1 Hz, 2H), 7.59 – 7.44 (m, 2H), 7.39 – 7.15 (m, 3H), 7.11 (d, *J* = 8.1 Hz, 2H), 2.24 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 166.4, 162.2, 142.3, 133.3, 129.6, 127.1, 126.5, 120.5, 21.5.; IR (KBr): 3075, 3021, 2938, 1612, 1558, 1478, 1460, 1304, 1285, 1254, 1176, 1117, 1065, 1163, 1067, 1022, 955, 835, 803, 752, 733, 697 cm⁻¹.; ESI-HRMS *m*/*z*: calcd. for C₁₅H₁₃N₂OS [M + H]⁺ 269.0743, found: 269.0738.

2-(4-Methylphenyl)-5-(2-chlorophenylthio)-1,3,4-oxadiazole (5b).

Yield: 49%; white solid; mp: 87 - 89 °C. ¹H NMR (200 MHz, CDCl₃) δ = 7.78 (d, *J* = 8.2 Hz, 2H), 7.61 – 7.55 (m, 1H), 7.43 (dd, *J* = 7.7 Hz, 1.7 Hz, 1H), 7.33 – 7.22 (m, 2H), 7.19 (d, *J* = 8.2 Hz, 2H), 2.32 (s, 3H).; ¹³C NMR (50 MHz, CDCl₃) δ = 166.8, 161.1, 142.6, 136.9, 134.7, 130.9, 130.6, 129.8, 127.9, 127.3, 126.9, 120.7, 21.7.; IR (KBr): 3098, 3016, 1652, 1594, 1548, 1492, 1462, 1268, 1142, 1021, 962, 832, 728, 707, 669 cm⁻¹.; ESI-HRMS *m/z*: calcd. for C₁₅H₁₂ClN₂OS [M + H]⁺ 303.0353, found: 303.0357.

VI. References

- 1. W. C. Still, M. Kahn, A. Mitra, J. Org. Chem., 1978, 43, 2923.
- 2. T. Kawano, K. Hirano, T. Satoh and M. Miura, J. Am. Chem. Soc., 2010, 132, 6900.
- 3. D. Giles, M. S. Prakash and K.V. Ramseshu, E-J. Chem., 2007, 4, 428.
- 4. D. Singh, A. M. Deobald, L. R. S. Camargo, G. Tabarelli, O. E. D. Rodrigues and A. L. Braga, *Org. Lett.*, 2010, **12**, 3288.
- 5. J. L. G. Ruano, A. Parraa and J. Alemán, Green Chem., 2008,10, 706.

VII. NMR Spectra

+6.265-

^{77}Se NMR (CDCl₃) spectrum of $\bf 3a$

S 17

¹³C NMR (100 MHz, CDCl₃) spectrum of **30**

¹³C NMR (50 MHz, CDCl₃) spectrum of **3t**

