Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Synthesis of *n*-alkyl terminal halohydrin esters from acid halides and cyclic ethers or thioethers under solvent- and catalyst-free conditions

Kunuru Venkatesham, Dokuburra Chanti Babu, Tatipamula Vinay Bharadwaj, Richard A. Bunce, Chitturi Bhujanga Rao* and Yenamandra Venkateswalu*†

Natural Products Laboratory, Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad, India, 500 007. E-mail: cbrchem@gmail.com; Fax: 91-40-27160512; Tel: + 91-40-27193167

Table of Contents

1. General information	SI-2
2. General experimental procedure	SI-2
3. Compound characterization data	SI-3-SI-13
4. Copies of ¹ H and ¹³ C NMR product spectra	SI-14-SI-73

General Information:

Analytical thin layer chromatography (TLC) was carried out using silica gel 60 F254 precoated plates. Visualization was accomplished with UV lamp or I₂ stain. All products were characterized by their NMR and MS spectra. ¹H and ¹³C NMR was recorded at 300 MHz, in CDCl₃ using TMS as the internal standard, chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane.

General Experimental Procedure:

The reaction was carried out by simple addition of organic acid halide (1.1 mmol) to heterocyclic ether (1.0 mmol) in a 10-mL round-bottomed flask under solvent- and catalyst-free conditions at rt. The reaction mixture was stirred at room temperature and monitored by TLC. Upon completion, the reaction mixture was diluted with EtOAc (5 mL) and washed with saturated aqueous NaHCO₃ (5 mL). The resulting solution was extracted again with EtOAc (10 mL) and the combined organic layers were dried over Na₂SO₄. The mixture was then concentrated *in vacuo* to yield the corresponding product. Column chromatography was performed if needed, but generally, the products required no further purification.

4-Chlorobutyl pivalate (3a)

¹H NMR (300 MHz, CDCl₃): δ 4.05 (t, 2H, J = 6.04 Hz), 3.55 (t, 2H, J = 6.7 Hz), 1.85 (m, 2H),
1.69 (m, 2H), 1.18 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 178.7, 64.2, 44.9, 28.8, 27.4, 27.1
(3C), 25.3.; IR: v 2941, 1727, 1114, 769 cm⁻¹; MS (ESI): m/z 215 (M+Na); HRMS: m/z Calcd:
215.0815 (C₉H₁₇ClO₂+Na); Found: 215.0809.

4-Bromobutyl pivalate (3b)

¹**H** NMR (300 MHz, CDCl₃): δ 4.08 (t, 2H, J = 6.4 Hz), 3.43 (t, 2H, J = 6.4 Hz), 1.93 (quintet, 2H, J = 6.4 Hz), 1.79 (t, 2H, J = 6.4 Hz), 1.19 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 178.3, 63.2, 38.6, 33.0, 29.2, 27.2, 27.0 (3C).; **IR**: v 2965, 1728, 1155, 771 cm⁻¹; **MS** (ESI): m/z 259 (M+Na); **HRMS:** m/z Calcd: 259.0309 (C₉H₁₇BrO₂+Na); Found: 259.0301.

4-Iodobutyl pivalate (3c)

¹**H** NMR (300 MHz, CDCl₃): δ 4.08 (t, 2H, J = 6.4 Hz), 3.21 (t, 2H, J = 6.4 Hz), 1.90 (m, 2H), 1.75 (m, 2H), 1.20 (s, 9H); ¹³**C** NMR (75 MHz, CDCl₃): δ 178.4, 62.9, 38.9, 29.8, 29.1, 27.0 (3C), 6.1. **IR**: v 2964, 1727, 1154, 770 cm⁻¹; **MS** (ESI): m/z 307 (M+Na); **HRMS**: m/z Calcd: 307.0171 (C₉H₁₇IO₂+Na); **Found**: 307.0157.

4-Iodobutyl propionate (11)

¹**H** NMR (300 MHz, CDCl₃): δ 4.09 (t, 2H, J = 6.4 Hz), 3.20 (t, 2H, J = 6.7 Hz), 2.31 (q, 2H, J = 7.5 Hz), 1.89 (m, 2H), 1.76 (m, 2H), 1.13 (t, 2H, J = 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 174.2, 62.9, 29.9, 29.5, 27.4, 9.0, 5.8. **IR**: v 2955, 1736, 1184, 747 cm⁻¹; **MS** (ESI): m/z 278 (M+Na); **HRMS**: m/z Calcd: 278.9858 (C₇H₁₃IO₂+Na); Found: 278.9836.

4-Iodobutyl pentanoate (12)

¹**H** NMR (300 MHz, CDCl₃): δ 4.09 (t, 2H, J = 6.4 Hz), 3.22 (t, 2H, J = 6.8 Hz), 2.31 (t, 2H, J = 7.3 Hz), 1.90 (m, 2H), 1.75 (m, 2H), 1.60 (m, 2H), 1.34 (m, 2H), 0.92 (t, 3H, J = 7.3 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 173.7, 62.9, 33.9, 29.9, 29.4, 26.9, 22.1, 13.6, 5.9; **IR**: v 2961, 1733, 1180, 758 cm⁻¹; **MS** (ESI): m/z 307 (M+Na); **HRMS**: m/z Calcd: 307.0171 (C₉H₁₇IO₂+Na); **Found**: 307.0163.

4-Iodobutyl heptanoate (13)

¹**H** NMR (300 MHz, CDCl₃): δ 4.08 (t, 2H, J = 6.0 Hz), 3.20 (t, 2H, J = 7.5 Hz), 2.28 (t, 2H, J = 7.5 Hz), 1.89 (m, 2H), 1.74 (m, 2H), 1.59 (m, 2H), 1.28 (m, 2H), 0.87 (t, 3H, J = 6.7 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 173.3, 62.6, 34.0, 34.0, 29.8, 29.3, 28.5, 24.6, 22.2, 13.7, 5.5.; **IR**: v 2955, 1736, 1168, 727 cm⁻¹; **MS** (ESI): m/z 335 (M+Na), **HRMS**: m/z Calcd: 335.0484 (C₁₁H₂₁IO₂+Na); Found: 335.0477.

4-Iodobutyl acrylate (14)

¹**H NMR** (300 MHz, CDCl₃): δ 6.41 (dd, 1H, J = 1.5, 17.3 Hz), 6.11 (dd, 1H, J = 10.5, 17.3, Hz), 5.82 (dd, 1H, J = 1.5, 10.5 Hz), 4.19 (t, 2H, J = 6.0 H), 3.22 (t, 2H J = 6.7 Hz), 1.92 (m, 2H), 1.81 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃): δ 166.2, 133.3, 130.8, 63.3, 29.9, 29.4, 5.7.; IR: v 2956, 1724, 1192, 809 cm⁻¹; **MS** (ESI): m/z = 276 (M+Na); **HRMS**: m/z **Calcd**: 276.9701 (C₇H₁₁IO₂+Na); **Found**: 276.9694.

4-Iodobutyl 2-fluorobenzoate (15)

¹**H NMR** (300 MHz, CDCl₃): δ 7.93 (t d, 1H, J = 1.8, 7.5 Hz), 7.52 (m, 1H), 7.28-7.10 (br m, 2H), 4.36 (t, 2H, J = 6.0 Hz), 3.26 (t, 2H, J = 6.6 Hz), 2.09-1.85 (m, 4H); ¹³**C NMR** (75 MHz, CDCl₃): δ 163.5, 160.1, 134.4, 134.3, 131.9, 123.8, 116.7, 63.9, 29.9, 29.4, 5.8; **IR**: v 2957, 1722, 1298, 757 cm⁻¹; **MS** (ESI): m/z 344 (M+Na); **HRMS**: m/z Calcd: 344.9763 (C₁₁H₁₂FIO₂+Na); Found: 344.9748.

4-Iodobutyl 2-phenoxyacetate (16)

¹**H NMR** (300 MHz, CDCl₃): δ 7.30 (m, 2H), 7.00 (t, 1H, J = 7.3 Hz), 6.92 (d, 2H, J = 7.9 Hz), 4.64 (s, 2H), 4.23 (t, 2H, J = 6.0 Hz), 3.16 (t, 2H, J = 6.4 Hz), 1.80 (m, 4H); ¹³**C NMR** (75 MHz, CDCl₃): δ 168.1, 157.5, 129.4 (2C), 121.6, 114.7 (2C), 65.0, 63.1, 29.5, 29.3, 5.7.; **IR**: v 2957, 1758, 1195, 755 cm⁻¹; **MS** (ESI): m/z 356 (M+Na); **HRMS**: m/z Calcd: 356.9963 (C₁₂H₁₅IO₃+Na); **Found**: 356.9951.

4-Iodobutyl dimethylcarbamate (17)

¹**H** NMR (300 MHz, CDCl₃): δ 4.08 (t, 2H, *J* = Hz), 3.21 (t, 2H, *J* = Hz), 2.89 (s, 6H), 1.90 (m, 2H), 1.73 (m, 2H); ¹³**C** NMR (75 MHz, CDCl₃): δ 156.3, 63.9, 36.2 (2C), 35.7, 29.9, 29.8, 5.9.; IR: v 2939, 1703, 1190, 768 cm⁻¹; MS (ESI): *m/z* 293 (M+Na); HRMS: *m/z* Calcd: 293.9967 (C₇H₁₄INO₂+Na); Found: 293.9958.

(*Z*)-4-Iodobut-2-en-1-yl pivalate (22)

¹H NMR (300 MHz, CDCl₃): δ 5.99 (m, 1H), 5.79 (m, 1H), 4.54 (m, 2H), 3.86 (dd, 2H, J = 0.7, 7.9 Hz), 1.21 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 178.0, 131.1, 127.8, 63.3, 38.7, 27.1 (3C), 3.9.; IR: v 2924, 1730, 1153, 769 cm⁻¹; MS (ESI): *m/z* 305 (M+Na); HRMS: *m/z* Calcd: 305.0014 (C₉H₁₅IO₂+Na); Found: 305.0006.

(Z)-4-Iodobut-2-en-1-yl 2-fluorobenzoate (23)

¹**H NMR** (300 MHz, CDCl₃): δ 7.95 (td, 1H, J = 1.8, 7.6 Hz), 7.53 (m, 1H), 7.21 (td, 1H, J = 1.0, 7.7 Hz), 7.14 (ddd, 1h, J = 0.9, 8.3, 10.8 Hz), 6.12 (m, 1H), 5.91 (m, 1H), 4.83 (d, 2H, J = 5.9 Hz), 3.89 (dd, 2H, J = 0.6, 7.9 Hz); ¹³**C NMR** (75 MHz, CDCl₃): δ 163.5, 160.0, 134.4, 31.9 (2C), 131.8, 127.0, 123.8, 116.7, 64.1, 3.6.; **IR**: v 2927, 1723, 1125, 757 cm⁻¹; **MS** (ESI): m/z 342 (M+Na); **HRMS**: m/z **Calcd**: 342.9607 (C₁₁H₁₀FIO₂+Na); **Found**: 342.9582.

(Z)-4-Iodobut-2-en-1-yl 2-phenoxyacetate (24)

¹**H** NMR (300 MHz, CDCl₃): δ 7.30 (t, 2H, J = 7.4 Hz), 7.00 (t, 1H, J = 7.3 Hz), 6.91 (d, 2H, J = 7.7 Hz), 6.01 (m, 1H), 5.78 (m, 1H), 4.68 (d, 2H, J = 6.1 Hz), 4.65 (s, 2H), 3.85 (d, 2H, J = 7.9 Hz); ¹³**C** NMR (75 MHz, CDCl₃): δ 168.5, 157.5, 132.6, 129.5 (2C), 126.4, 121.7, 114.5 (2C), 65.1, 64.2,3.3. **IR**: v 2924, 1738, 1213, 755 cm⁻¹; **MS** (ESI): m/z 354 (M+Na); **HRMS**: m/z **Calcd**: 354.9807 (C₁₂H₁₃IO₃+Na); **Found**: 354.9778.

(*Z*)-4-Iodobut-2-en-1-yl dimethylcarbamate (25)

¹**H NMR** (300 MHz, CDCl₃): δ 5.97 (m, 1H), 5.81 (m, 1H), 4.56 (d, 2H, J = 5.6 Hz), 3.85 (d, 2H, J = 7.7 Hz), 2.91 (s, 6H); ¹³**C NMR** (75 MHz, CDCl₃): δ 156.1, 130.6, 128.5, 64.3, 36.4, 35.8, 4.1. **IR**: v 2924, 1632, 1187, 767 cm⁻¹; **MS** (ESI): m/z = 291 (M+Na); **HRMS**: m/z Calcd: 291.9810 (C₇H₁₂IO₂+Na); Found: 291.9802.

5-Iodopentan-2-yl pivalate (26)

¹**H NMR** (300 MHz, CDCl₃): δ 4.95 (m, 1H), 3.18 (t, 2H, J = 6.7 Hz), 2.31 (q, 2H, J = 7.7 Hz), 1.84 (m, 2H), 1.66 (m, 2H), 1.23 (s, 9H), 1.13 (t, 3H, J = 7.5 Hz); ¹³**C NMR** (75 MHz, CDCl₃): δ 176.7, 68.5, 36.0, 28.8, 28.3, 26.6 (3C), 19.4, 5.8. ; **IR**: v 2974, 1725, 1166, 770 cm⁻¹; **MS** (ESI): m/z 321 (M+Na); **HRMS**: m/z Calcd: 321.0327 (C₁₀H₁₉IO₂+Na); Found: 321.0317.

5-Iodopentan-2-yl propionate (27)

¹**H NMR** (300 MHz, CDCl₃): δ 4.92 (m, 1H), 3.18 (t, 2H, *J* = 6.7 Hz), 2.29 (q, 2H, *J* = 7.7 Hz), 1.84 (m, 2H), 1.65 (m, 2H), 1.21 (d, 3H, *J* = 6.2 Hz), 1.13 (t, 3H, *J* = 7.5 Hz); ¹³**C NMR** (75 MHz, CDCl₃): δ 173.8, 69.3, 36.5, 29.2, 27.6, 19.8, 9.0, 6.1; IR: v 2957, 1741, 1172, 745 cm⁻¹; **MS** (ESI): *m/z* 271 (M+H), 293 (M+Na), **HRMS**: m/z **Calcd**: 271.0195 (C₈H₁₅IO₂+H); **Found**: 271.0190.

5-Iodopentan-2-yl 2-fluorobenzoate (28)

¹**H NMR** (300 MHz, CDCl₃): δ 7.91 (qd, 1H, J = 1.5, 7.9 Hz), 7.52 (m, 1H), 7.28-7.10 (br m, 2H), 5.21 (m, 1H), 3.22 (t, 2H, J = 6.6 Hz), 1.99-1.71 (br m, 4H), 1.36 (d, 3H, J = 6.2 Hz); ¹³**C NMR** (75 MHz, CDCl₃): δ 163.8, 160.7, 134.1, 131.8 (2C), 123.8, 116.9, 70.8, 36.6, 29.1, 19.9, 6.2.; **IR**: v 2957, 1722, 1298, 757 cm⁻¹; **MS** (ESI): m/z 358 (M+Na); **HRMS**: m/z Calcd: 358.9920 (C₁₂H₁₄FIO₂+Na); Found: 358.9896.

5-Iodopentan-2-yl 2-phenoxyacetate (29)

¹**H NMR** (300 MHz, CDCl₃): δ 7.30 (t, 2H, J = 8.1 Hz), 6.99 (t, 1H, J = 7.3 Hz), 6.91(dd, 2H, J = 0.9, 7.5 Hz), 5.07 (m, 1H), 4.64 (s, 2H), 4.61 (s, 3H), 3.13 (t, 2H, J = 6.4 Hz), 1.84-1.60 (m, 4H), 1.26 (d, 3H, J = 6.2 Hz); ¹³**C NMR** (75 MHz, CDCl₃): δ 168.5, 157.6, 129.4 (2C), 121.6, 114.4 (2C), 71.1, 65.3, 36.4, 28.8, 19.8, 5.9; **IR**: v 2931, 1757, 1198, 754 cm⁻¹; **MS** (ESI): m/z 371 (M+Na); **HRMS**: m/z **Calcd**: 371.0120 (C₁₃H₁₇IO₃+Na); **Found**: 371.0104.

5-Iodopentan-2-yl dimethylcarbamate (**30**)

¹**H** NMR (300 MHz, CDCl₃): δ 4.81 (m, 1H), 3.19 (t, 2H, J = 6.8 Hz), 2.90 (s, 6H), 1.92-1.80 (m, 2H), 1.77-1.62 (m, 2H), 1.23 (d, 3H, J = 6.2 Hz); ¹³**C** NMR (75 MHz, CDCl₃): δ 156.0, 70.3, 36.7, 35.6, 29.2, 20.3, 6.4.; **IR**: v 2930, 1702, 1191, 769 cm⁻¹; **MS** (ESI): m/z 308 (M+Na); **HRMS**: m/z Calcd: 308.0123 (C₈H₁₆NIO₂+Na); **Found**: 308.0111.

S-4-Iodobutyl 2,2-dimethylpropanethioate (31)

¹**H** NMR (300 MHz, CDCl₃): δ 3.18 (t, 2H, J = 6.7 Hz), 2.84 (t, 2H, J = 6.7 Hz), 1.89 (m, 2H), 2.33 (m, 2H)., 1.22 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 206.6, 46.3, 32.3, 30.3, 27.3 (3C), 26.8, 5.7.; **IR**: v 2967, 1702, 1101, 713 cm⁻¹; **MS** (ESI): m/z 322 (M+Na); **HRMS**: m/z Calcd = 322.9942 (C₉H₁₇IOS+Na); **Found**: 322.9936.

S-4-Iodobutyl 2-fluorobenzothioate (**32**)

¹**H NMR** (300 MHz, CDCl₃): δ 7.85 (t, 1H, J = 6.7 Hz), 7.50 (q, 1H, J = 6.7 Hz), 7.26 - 7.12 (m, 2H), 3.22 (t, 2H, J = 6.7 Hz), 3.09 (t, 2H, J = 7.5 Hz), 1.97 (m, 2H), 1.81 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃): δ 188.4, 159.3, 134.2, 129.4 (2C), 129.0, 116.5, 32.2, 30.0, 27.9, 5.7.; **IR**: v 2932, 1669, 1197, 917, 765 cm⁻¹; **MS** (ESI): m/z 360 (M+Na); **HRMS**: m/z Calcd: 360.9535 (C₁₁H₁₂FIOS+Na); **Found**: 360.9517.

S-4-Iodobutyl 2-phenoxyethanethioate (**33**)

¹**H** NMR (300 MHz, CDCl₃): δ 7.31 (t, 2H, J = 7.5 Hz), 7.02 (t, 1H, J = 7.5 Hz), 6.91 (d, 2H, J = 8.3 Hz), 4.68 (s, 2H), 3.17 (t, 2H, J = 6.7 Hz), 2.95 (t, 2H, J = 7.5 Hz), 1.89 (m, 2H), 1.71 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 198.1, 157.5, 129.5 (2C), 121.9, 114.7 (2C), 72.6, 32.1, 30.0, 26.7, 5.5.; **IR**: v 2927, 1680, 1216, 754 cm⁻¹; **MS** (ESI): m/z 372 (M+Na); **HRMS**: m/z **Calcd**: 372.9735 (C₁₂H₁₅IO₂S+Na); **Found**: 372.9709.

S-4-Iodobutyl dimethylcarbamothioate (**34**)

¹**H NMR** (300 MHz, CDCl₃): δ 3.19 (t, 2H, *J* = 7.5 Hz), 3.00 (s, 6H), 2.91 (t, 2H, *J* = 7.5Hz), 1.92, (m, 2H), 1.72 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃): δ 168.1, 36.8, 35.0 (2C), 28.8, 28.7, 5.8.; **IR**: v 2930, 1652, 1099, 687 cm⁻¹; **MS** (ESI): *m/z* 309 (M+Na); **HRMS**: *m/z* **Calcd**: 309.9738 (C₇H₁₄INOS+Na); **Found**: 309.9707.

5-Iodopentyl pivalate (35)

¹**H NMR** (300 MHz, CDCl₃): δ 4.06 (t, 2H, *J* = 6.0 Hz), 3.19 (t, 2H, *J* = 6.7 Hz), 1.84 (m, 2H), 1.65 (m, 2H), 1.47 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃): δ 178.5, 63.9, 38.6, 32.8, 27.5, 27.1, 26.9 (3C), 6.4.; **IR**: v 2963, 1727, 1156, 770 cm⁻¹; **MS** (ESI): *m/z* 321 (M+Na); **HRMS**: *m/z* **Calcd**: 321.0327 (C₁₀H₁₉IO₂+Na); **Found**: 321.0317.

5-Iodopentyl propionate (36)

¹**H NMR** (300 MHz, CDCl₃): δ 4.07 (t, 2H, J = 6.4 Hz), 3.19 (t, 2H, J = 6.7 Hz), 2.31 (q, 2H, J = 7.5 Hz), 1.85 (m, 2H), 1.65 (m, 2H), 1.47 (m, 2H), 1.14 (t, 3H, J = 7.5 Hz); ¹³**C NMR** (75 MHz, CDCl₃): δ 174.4, 63.8, 32.8, 27.4 (2C), 26.8, 9.0, 6.5.; IR: v 2940, 1736, 1186, 770 cm⁻¹; **MS** (ESI): m/z 271 (M+H), 293 (M+Na); **HRMS**: m/z Calcd: 271.0195 (C₈H₁₅IO₂+H); Found: 271.0190.

5-Iodopentyl 2-fluorobenzoate (37)

¹**H** NMR (300 MHz, CDCl₃): δ 7.93 (t d, 1H, J = 1.5, 7.5 Hz), 7.51 (m, 1H), 7.23-7.10 (m, 2H), 4.34 (t, 2H, J = 6.7 Hz), 3.21 (t, 2H, J = 6.7 Hz), 1.90 (m, 2H), 1.80 (m, 2H), 1.58 (m, 2H); ¹³**C** NMR (300 MHz, CDCl₃): δ 163.6, 160.0, 134.4, 131.9 (2C), 123.8, 116.7, 64.8, 32.8, 27.4, 26.9, 6.5. ; **IR**: v 2937, 1726, 1298, 757 cm⁻¹; **MS** (ESI): m/z = 358 (M+Na); **HRMS**: m/z Calcd: 358.9920 (C₁₂H₁₄FIO₂+Na); Found: 358.9896.

5-Iodopentyl 2-phenoxyacetate (38)

¹**H NMR** (300 MHz, CDCl₃): δ 7.29 (m, 2H, J = 7.9 Hz), 6.99 (t, 1H, J = 7.9 Hz), 6.91 (d, 2H, J = 7.9Hz), 4.63 (s, 2H), 4.21 (t, 2H, J = 5.9Hz), 3.14 (t, 2H, J = 6.9 Hz), 1.81 (m, 2H), 1.67 (m, 2H), 1.42 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃): δ 168.9, 157.7, 129.4 (2C), 121.6, 114.5 (2C), 65.2, 64.7, 32.7, 27.3, 26.6, 6.2.; **IR**: v 2935, 1758, 1194, 754 cm⁻¹; **MS** (ESI): *m/z* 371 (M+Na); **HRMS**: *m/z* **Calcd** = 371.0120 (C₁₃H₁₇IO₃+Na); **Found**: 371.0104.

5-Iodopentyl dimethylcarbamate (**39**)

¹**H NMR** (300 MHz, CDCl₃): δ 4.05 (t, 2H, *J* = 6.4 Hz), 3.18 (t, 2H, *J* = 6.9 Hz), 2.89 (s, 6H), 1.84 (m, 2H), 1.64 (m, 2H), 1.47 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃): δ 156.5, 64.7, 36.2, 35.7, 32.8, 27.8, 26.7, 6.6.; **IR**: v 2934, 1704, 1189, 769 cm⁻¹; **MS** (ESI): *m/z* 308 (M+Na); **HRMS**: *m/z* **Calcd**: 308.0123 (C₈H₁₆NIO₂+Na); **Found**: 308. 0111.

Tetrahydro-2*H*-pyran-4-yl pivalate (41)

¹**H NMR** (300 MHz, CDCl₃): δ 4.92 (m, 1H), 3.87 (m, 2H), 3.57(m, 2H), 1.90 (m, 2H), 1.66 (m, 2H), 1.20 (s, 9H).; **MS** (ESI): *m/z* 209 (M+Na).

5-iodopentane-1,3-dipivalate (42)

¹**H NMR** (300 MHz, CDCl₃): δ 5.01 (m, 1H), 4.08 (t, 2H, J = 75. Hz), 3.12 (t, 2H, J = 7.5 Hz), 2.15 (m, 2H), 1.91(m, 2H), 1.19 (s, 18H); ¹³**C NMR** (75 MHz, CDCl₃): δ 178.3, 177.1, 70.7, 60.1, 38.5, 32.6, 27.1 (6C), 5.0; **IR**: v 2970, 1728, 1150, 767 cm⁻¹; **MS** (ESI): *m/z* 421 (M+Na); **HRMS**: *m/z* calcd = 421.0852 (C₁₅H₂₇IO₄+Na); **Found**: 421.0837.

Tetrahydro-2*H*-pyran-4-yl propionate (43)

¹**H NMR** (300 MHz, CDCl₃): δ 4.94 (m, 1H), 3.90 (m, 2H), 3.54 (m, 2H), 2.33 (q, 2H, *J* = 7.6 Hz), 1.90 (m, 2H), 1.66 (m, 2H), 1.14 (t, 3H, *J* = 7.6 Hz). **MS** (ESI): *m/z* 181 (M+Na).

5-Iodopentane-1,3-dipropionate (44)

¹**H** NMR (300 MHz, CDCl₃): δ 5.05 (m, 1H), 4.10 (t, 2H, J = 6.4 Hz), 3.11 (m, 2H), 2.34 (qd, 4H, J = 2.2, 7.5 Hz), 2.16 (m, 2H), 1.92 (q, 2H, J = 6.4 Hz), 1.14 (td, 6H, J = 2.0, 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 174.2, 173.8, 70.9, 60.1, 38.4, 32.6, 27.4 (2C), 9.0 (2C), -0.49 (CH₂-I). MS (ESI): m/z 365 (M+Na); HRMS: m/z Calcd: 365.0226 (C₁₁H₁₉IO₄+Na); Found: 365.0217.

Fig: ¹H NMR of compound **3a**

Fig: ¹³C NMR of compound **3a**

Fig: ¹H NMR of compound **3b**

Fig: ¹³C NMR of compound **3b**

Fig: ¹H NMR of compound **3**c

Fig: ¹³C NMR of compound **3c**

Fig: ¹H NMR of compound **11**

Fig: ¹³C NMR of compound **11**

Fig: ¹H NMR of compound **12**

Fig: ¹³C NMR of compound **12**

Fig: ¹H NMR of compound **13**

Fig: ¹³C NMR of compound **13**

Fig: ¹H NMR of compound **14**

Fig: ¹H NMR of compound **15**

Fig: ¹³C NMR of compound **15**

Fig: ¹H NMR of compound **16**

Fig: ¹³C NMR of compound **16**

Fig: ¹H NMR of compound **17**

Fig: ¹³C NMR of compound **17**

Fig: ¹H NMR of compound **22**

Fig: ¹³C NMR of compound **22**

Fig: ¹H NMR of compound **23**

Fig: ¹³C NMR of compound **23**

Fig: ¹H NMR of compound **24**

Fig: ¹H NMR of compound **25**

Fig: ¹³C NMR of compound **25**

Fig: ¹H NMR of compound **26**

Fig: ¹H NMR of compound **27**

Fig: ¹³C NMR of compound **27**

Fig: ¹H NMR of compound **28**

Fig: ¹³C NMR of compound **28**

Fig: ¹H NMR of compound **29**

Fig: ¹³C NMR of compound **29**

Fig: ¹H NMR of compound **30**

Fig: ¹³C NMR of compound **30**

Fig: ¹H NMR of compound **31**

Fig: ¹H NMR of compound **32**

Fig: ¹³C NMR of compound **32**

Fig: ¹H NMR of compound **33**

Fig: ¹³C NMR of compound **33**

Fig: ¹H NMR of compound **34**

Fig: ¹³C NMR of compound **34**

Fig: ¹H NMR of compound **35**

Fig: ¹³C NMR of compound **35**

Fig: ¹H NMR of compound **36**

Fig: ¹³C NMR of compound **36**

Fig: ¹H NMR of compound **37**

Fig: ¹³C NMR of compound **37**

Fig: ¹H NMR of compound **38**

Fig: ¹³C NMR of compound **38**

Fig: ¹H NMR of compound **39**

Fig: ¹³C NMR of compound **39**

Fig: ¹H NMR of compound **44**

