Electronic Supplementary Information

Highly stable and covalently functionalized magnetic nanoparticles by polyethyleneimine for Cr (VI) adsorption from aqueous solution Bo Chen, Xuesong Zhao, Yang Liu, Bugang Xu and Xuejun Pan*

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China. E-mail: xjpan@kmust.edu.cn.

Concentration of NaOH $(mol \ L^{-1})$	Untreated	0.1	0.2	0.3	0.5
$(1101 L^{-1})$					
Adsorption capacity	124.44	124.37	124.50	124.26	124.38
$(mg g^{-1})$					

Table S1. Effect of different concentrations of NaOH on Cr (VI) adsorption capacity

Fig. S1 FT-IR spectra of NH₂-MNPs and PEI-MNPs.

Fig. S2 XRD patterns of NH₂-MNPs and PEI-MNPs.

Fig. S3 TGA curves of NH₂-MNPs and PEI-MNPs.

Fig. S4 Effect of concentration of PEI on Cr (VI) adsorption on PEI-MNPs.

Fig. S5 Adsorption mechanism of Cr (VI) by PEI-MNPs under different initial solution pH.

Fig. S6 The pseudo-second-order kinetics plots of Cr (VI) adsorption on PEI-MNPs.