Supporting Information

A remarkable solvent effect on the reaction of 4-hydroxycoumarin with (E)-3-aryl-2-nitroprop-2-enol: Facile synthesis of highly substituted furo/pyrano[3,2-c]chromenes

Shivendra Singh, Anvita Srivastava, Shaikh M. Mobin and Sampak Samanta^{a*}

Indian Institute of Technology Indore, 452017, Indore, Madhya Pradesh, India.

General Information:

All reactions were carried out either under inert atmosphere or air and monitored by TLC using Merck 60 F₂₅₄ pre coated silica gel plates (0.25 mm thickness) and the products were visualized by UV detection. Flash chromatography was carried out with silica gel (200-300 mesh). FT-IR spectra were recorded on a BrukerTensor-27 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance (III) 400 MHz spectrometer. Data for ¹H NMR are reported as a chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, q = quartet, m = multiplet), coupling constant *J* (Hz), integration, and assignment, data for ¹³C are reported as a chemical shift. High resolutions mass spectral analyses (HRMS) were carried out using ESI-TOF-MS. Single crystal X-ray structural studies were performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data were collected at 293(2) K using graphitemonochromoated Mo K α radiation ($\lambda_{\alpha} = 0.71073$ Å). The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phiomega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97 and refined by full matrix least-squares with SHELXL-97, refining on $F^{2,1}$

General Procedure for the Synthesis of Furocoumarin Derivatives (3aa-3ec): A heterogenous mixture of substituted 4-hydroxycoumarin (1a-e, 0.25 mmol) and (*E*)-3-aryl-2-nitroprop-2-enol (2a-j, 0.3 mmol) in water (0.6 mL) was heated at 70 °C for 5-10h (monitored by TLC). After completion of the reaction, water was decanted or removed by rotary evaporator under reduced pressure to give the gummy residue which was purified by column chromatography over silica gel (eluent: EtOAc/hexane = 1:9 to 1:4) to furnish the pure product **3aa-3ec**. All the products were characterized by their spectroscopic data (IR, ¹H and ¹³C NMR, HRMS).

2-(Hydroxymethyl)-3-phenyl-4*H***-furo[3,2-***c***]chromen-4-one (3aa): Yield 83%; IR (KBr) v 3509, 3048, 2924, 2853, 1743, 1631, 1558, 1502, 1452, 1426, 1373, 1324, 1277 cm⁻¹; ¹H NMR**

(400 MHz, DMSO-d₆) δ 7.97-7.99 (m, 1H), 7.64-7.68 (m, 1H), 7.55-7.60 (m, 3H), 7.47-7.50 (m, 2H), 7.40-7.46 (m, 2H), 5.68 (br s, 1H), 4.53 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 157.4, 152.7, 152.4, 131.0, 129.9, 128.9, 128.4, 128.4, 124.4, 123.9, 121.0, 117.2, 112.6, 109.4, 55.6; HRMS (ESI) m/z calcd. For C₁₈H₁₂O₄ [M+Na]⁺:

315.0628; Found 315.0623.

2-(Hydroxymethyl)-3-(4-methylphenyl)-4H-furo[3,2-c]chromen-4-one (3ab): Yield 84%; IR

(KBr) v 3417, 2924, 2855, 1750, 1630, 1556, 1516, 1497, 1452, 1428, 1372, 1321, 1277, 1217 cm⁻¹; ¹H NMR (400 MHz, DMSOd₆) δ 7.97-7.99 (m, 1H), 7.63-7.67 (m, 1H), 7.54-7.56 (m, 1H), 7.45-7.49 (m, 3H), 7.27-7.29 (m, 2H), 5.65 (t, *J*₁ = 5.76 Hz, *J*₂ = 11.04 Hz, 1H), 4.52 (d, *J* = 5.52 Hz, 2H), 2.36 (s, 3H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta 157.6, 157.4, 152.7, 152.2, 138.4, 130.9, 129.8, 129.1, 125.9, 124.4, 123.9, 121.0, 117.2, 112.6, 109.4, 55.7, 21.3; HRMS (ESI) m/z calcd. For C₁₉H₁₄O₄ [M+Na]⁺: 329.0784; Found 329.0785.$

2-(Hydroxymethyl)-3-(4-methoxyphenyl)-4H-furo[3,2-c]chromen-4-one (3ac): Yield 88%;

IR (KBr) v 3465, 3069, 2935, 2837, 1746, 1649, 1628, 1599, 1570, 1516, 1452, 1429, 1408, 1373, 1349, 1309, 1292, 1276 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.94 (m, 1H), 7.51-7.56 (m, 3H), 7.46-7.46 (m, 1H), 7.35-7.39 (m, 1H), 7.00-7.03 (m, 2H), 4.78 (s, 2H), 3.86 (s, 3H), 2.03 (br s, 1H); ¹³C NMR

(100 MHz, CDCl₃) δ 159.8, 157.8, 157.4, 152.8, 152.0, 131.2, 131.0, 124.5, 123.7, 121.2, 121.0, 117.2, 113.9, 112.7, 109.5, 55.7, 55.3; HRMS (ESI) m/z calcd. For C₁₉H₁₄O₅[M+Na]⁺: 345.0733; Found 345.0732.

2-(Hydroxymethyl)-3-(2-methoxyphenyl)-4H-furo[3,2-c]chromen-4-one (3ad): Yield 87%;

IR (KBr) v 3432, 2956, 2922, 2852, 1721, 1630, 1597, 1559, 1493, 1463, 1436, 1374, 1320, 1276, 1247, 1214 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.95 (m, 1H), 7.50-7.54 (m, 1H), 7.41-7.44 (m, 2H), 7.30-7.40 (m, 3H), 7.02-7.10 (m, 2H), 4.63 (s, 2H), 3.83 (s, 3H), 2.16 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 157.3, 156.9, 153.1, 152.7, 132.2, 130.7, 130.2, 124.4, 121.0, 120.9, 118.9, 118.0, 117.2,

112.8, 111.5, 110.4, 56.2, 55.9; HRMS (ESI) m/z calcd. For $C_{19}H_{14}O_5[M+Na]^+$: 345.0733; Found 345.0738.

2-(Hydroxymethyl)-3-(3,4-dimethoxyphenyl)-4*H*-furo[**3,2-***c*]**chromen-4-one** (**3ae**): Yield 82%; IR (KBr) v 3493, 2944, 2916, 2834, 1760, 1629, 1587, 1556, 1518, 1470, 1451, 1423,

1413, 1379, 1359, 1322, 1272 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.96 (m, 1H), 7.55-7.59 (m, 1H), 7.37-7.49 (m, 2H), 7.26-7.31 (m, 1H), 7.16-7.20 (m, 1H), 6.97-7.00 (m, 1H), 4.82 (s, 2H), 3.96 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 157.3, 152.7, 152.1, 149.2, 148.6, 130.9, 124.4, 123.9, 122.3, 121.4,

121.0, 117.1, 113.5, 112.6, 110.9, 109.3, 55.9, 55.8, 55.7; HRMS (ESI) m/z calcd. For $C_{20}H_{16}O_6[M+Na]^+$ 375.0839; Found 375.0859.

2-(Hydroxymethyl)-3-(2-hydroxyphenyl)-4H-furo[3,2-c]chromen-4-one (3af): Yield 63%; IR

(KBr) v 3423, 2924, 2854, 1720, 1628, 1600, 1560, 1503, 1450, 1424, 1377, 1321, 1288, 1237 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 9.55 (br s, 1H), 7.95-7.97 (m, 1H), 7.61-7.65 (m, 1H), 7.44-7.54 (m, 2H), 7.21-7.26 (m, 2H), 6.85-6.92 (m, 2H), 4.44 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 157.9, 153.6, 153.4, 152.5, 132.2, 131.2, 130.5, 124.8, 121.6, 121.2, 119.1, 118.5, 117.6, 117.3, 112.6,

110.4, 55.8; HRMS (ESI) m/z calcd. For C₁₈H₁₂O₅[M+Na]⁺ : 331.0577; Found 331.0578.

2-(Hydroxymethyl)-3-(4-chlorophenyl)-4H-furo[3,2-c]chromen-4-one (3ag): Yield 81%; IR

(KBr) v 3529, 3444, 2956, 2924, 2853, 1883, 1733, 1628, 1556, 1499, 1451, 1423, 1400, 1323, 1275, 1214 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 7.98-7.99 (m, 1H), 7.64-7.69 (m, 1H), 7.60-7.63 (m, 2H), 7.54-7.58 (m, 3H), 7.46-7.50 (m, 1H), 5.71 (t, *J* = 5.52 Hz, 1H), 4.53 (d, *J* = 5.52 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 157.5, 152.8, 152.5, 134.7, 131.3, 131.2, 128.6,

127.4, 124.6, 122.9, 121.1, 117.3, 112.5, 109.2, 55.6; HRMS (ESI) m/z calcd. For C₁₈H₁₁ClO₄ [M+Na]⁺: 349.0238; Found 349.0241.

2-(Hydroxymethyl)-3-(2-chlorophenyl)-4H-furo[3,2-c]chromen-4-one (3ah): Yield 85%; IR

(KBr) v 3444, 2957, 2924, 2853, 1720, 1630, 1514, 1502, 1452, 1422, 1379, 1320, 1258, 1213 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.97 (m, 1H), 7.52-7.57 (m, 2H), 7.35-7.46 (m, 5H), 4.59-4.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 157.2, 153.2, 152.9, 134.2, 132.2, 131.1, 130.2, 129.8, 128.4, 126.8, 124.5, 121.1, 120.2, 117.3, 112.7, 110.4, 55.8; HRMS (ESI) m/z calcd. For C₁₈H₁₁ClO₄

[M+Na]⁺: 349.0238; Found 349.0239.

2-(Hydroxymethyl)-3-(4-bromophenyl)-4H-furo[3,2-c]chromen-4-one (3ai): Yield 79%; IR

(KBr) v 3433, 2924, 2854, 1733, 1629, 1597, 1559, 1501, 1450, 1425, 1394, 1366, 1321, 1276, 1261, 1234 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.93 (m, 1H), 7.58-7.60 (m, 2H), 7.52-7.55 (m, 1H), 7.43-7.48 (m, 3H), 7.34-7.38 (m, 1H), 6.99 (br s, 1H), 4.75 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 152.7, 152.4, 135.9, 131.6, 131.5, 131.2, 127.9, 124.8, 124.6, 122.9, 121.1,

117.3, 112.4, 109.1, 55.5; HRMS (ESI) m/z calcd. For $C_{18}H_{11}BrO_4[M+Na]^+$ 392.9733; Found 392.9732.

2-(Hydroxymethyl)-3-(4-nitrophenyl)-4H-furo[3,2-c]chromen-4-one (3aj): Yield 83%; IR

(KBr) v 3502, 3102, 2917, 1738, 1630, 1596, 1508, 1449, 1425, 1396, 1344, 1214 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.33-8.35 (m, 2H), 7.94-7.96 (m, 1H), 7.80-7.82 (m, 2H), 7.56-7.61 (m, 1H), 7.47-7.49 (m, 1H), 7.38-7.42 (m, 1H), 4.79 (s, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 156.7, 155.3, 153.0, 152.1,

147.0, 136.2, 131.6, 131.2, 125.1, 123.2, 120.9, 119.9, 117.0, 111.8, 108.7, 53.8; HRMS (ESI) m/z calcd. For $C_{18}H_{11}NO_6[M+H]^+$: 338.0659; Found 338.0659.

2-(Hydroxymethyl)-8-methyl-3-phenyl-4H-furo[3,2-c]chromen-4-one (3ba): Yield 86%; IR

(KBr) v 3430, 2924, 2854, 2362, 2342, 1719, 1652, 1629, 1570, 1497, 1451, 1433, 1389, 1313, 1277 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.72 (m, 1H), 7.56-7.58 (m, 2H), 7.45-7.49 (m, 2H), 7.39-7.43 (m, 1H), 7.32-7.33 (m, 2H), 4.76 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 157.5, 152.3, 151.0, 134.3, 132.1,

130.0, 129.1, 128.4 (2C), 123.9, 120.8, 116.9, 112.3, 109.3, 55.7, 21.0; HRMS (ESI) m/z calcd. For C₁₉H₁₄O₄[M+Na]⁺: 329.0784; Found 329.0780.

2-(Hydroxymethyl)-8-methyl-3-(4-methoxyphenyl)-4*H*-furo[3,2-*c*]chromen-4-one (3bc):

Yield 88%; IR (KBr) v 3439, 2945, 2918, 2837, 2360, 2339, 1828, 1707, 1656, 1616, 1593, 1566, 1515, 1458, 1435, 1413, 1359, 1316, 1293 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (br s, 1H), 7.50-7.53 (m, 2H), 7.32-7.33 (m, 2H), 6.98-7.01 (m, 2H), 4.76 (s, 2H), 3.85 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 159.7, 157.9, 157.4,

151.8, 150.9, 134.3, 132.0, 131.2, 123.7, 121.2, 120.7, 116.9, 113.9, 112.3, 55.7, 55.3, 20.9; HRMS (ESI) m/z calcd. For $C_{20}H_{16}O_5[M+H]^+$: 337.1071; Found 337.1074.

2-(Hydroxymethyl)-8-methyl-3-(4-chlorophenyl)-4H-furo[3,2-c]chromen-4-one (3bg): Yield

81%; **IR** (KBr) v 3561, 3428, 2956, 2925, 2854, 2360, 1729, 1632, 1571, 1505, 1493, 1463, 1431, 1407, 1362, 1314, 1276 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (br s, 1H), 7.51-7.54 (m, 2H), 7.42-7.45 (m, 2H), 7.32-7.34 (m, 2H), 4.74 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8,

157.6, 152.3, 150.9, 134.6, 134.4, 132.3, 131.3, 128.6, 127.5, 122.9, 120.8, 116.9, 112.1, 109.1, 55.6, 20.9; HRMS (ESI) m/z calcd. For C₁₉H₁₃ClO₄[M+H]⁺: 341.0575; Found 341.0608.

2-(Hydroxymethyl)-8-chloro-3-phenyl-4H-furo[3,2-c]chromen-4-one (3ca): Yield 79%; IR

(KBr) v 3555, 3063, 2925, 2360, 2340, 1747, 1632, 1556, 1502, 1447, 1419, 1362, 1307, 1262, 1241 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.92 (m, 1H), 7.55-7.57 (m, 2H), 7.42-7.49 (m, 4H), 7.37-7.39 (m, 1H), 4.78 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 156.8, 156.1, 153.0, 149.6, 138.1, 130.9, 130.0,

129.9, 128.6, 128.4, 121.3, 120.6, 118.7, 113.6, 55.6; HRMS (ESI) m/z calcd. For $C_{18}H_{11}ClO_4[M+Na]^+$ 349.0238; Found 349.0234.

2-(Hydroxymethyl)-8-chloro-3-(4-methylphenyl)-4H-furo[3,2-c]chromen-4-one (3cb): Yield

80%; **IR** (KBr) v 3432, 2922, 2855, 1755, 1630, 1555, 1514, 1492, 1420, 1355, 1309, 1258, 1214 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.92 (m, 1H), 7.43-7.49 (m, 3H), 7.36-7.39 (m, 1H), 7.26-7.29 (m, 2H), 4.76 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 156.0, 152.8, 150.9,

138.6, 130.9, 130.0, 129.9, 129.8, 129.2, 125.6, 124.0, 120.6, 118.7, 113.7, 55.6, 21.3; HRMS (ESI) m/z calcd. For C₁₉H₁₃ClO₄[M+Na]⁺: 363.0395; Found 363.0396.

2-(Hydroxymethyl)-8-chloro-3-(4-chlorophenyl)-4H-furo[3,2-c]chromen-4-one (3cg): Yield

77%; IR (KBr) v 3429, 2924, 2853, 1750, 1629, 1555, 1494, 1465, 1421, 1355, 1369, 1259 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 7.96-7.97 (m, 1H), 7.66-7.68 (m, 1H), 7.57-7.61 (m, 3H), 7.53-7.56 (m, 2H), 5.70 (t, *J* = 5.52 Hz, 1H), 4.52 (d, *J* = 5.52 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 156.3,

155.0, 150.6, 133.1, 131.7, 130.9, 128.9, 128.2, 128.2, 127.8, 120.7, 120.0, 118.9, 113.3, 109.5, 53.7; HRMS (ESI) m/z calcd. For C₁₈H₁₀Cl₂O₄[M+Na]⁺: 382.9848; Found 382.9816.

2-(Hydroxymethyl)-8-bromo-3-phenyl-4*H***-furo[3,2-***c***]chromen-4-one (3da): Yield 79%; IR (KBr) v 3560, 3443, 3062, 2853, 1747, 1630, 1584, 1552, 1499, 1446, 1417, 1359, 1305, 1263**

cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.06 (m, 1H), 7.59-7.62 (m, 1H), 7.54-7.57 (m, 2H), 7.39-7.49 (m, 3H), 7.31-7.33 (m, 1H), 4.77 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 155.9, 153.0, 151.5, 133.8, 129.9, 128.6, 128.4, 124.0, 123.6, 123.6, 118.9, 117.3, 114.1, 110.1, 55.6; HRMS (ESI) m/z calcd. For

C₁₈H₁₁BrO₄[M+Na]⁺ 392.9733; Found 392.9704.

2-(Hydroxymethyl)-8-bromo-3-(4-methylphenyl)-4*H***-furo**[**3,2-***c*]**chromen-4-one (3db):** Yield 86%; IR (KBr) v 3431, 2921, 2855, 2360, 2340, 1747, 1626, 1550, 1514, 1491, 1422, 1409,

1355, 1306, 1259 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.06 (m, 1H), 7.60-7.62 (m, 1H), 7.43-7.45 (m, 2H), 7.30-7.33 (m, 1H), 7.27-7.29 (m, 2H), 4.76 (s, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 155.9, 152.8, 151.5, 138.6, 133.7, 132.9, 129.8, 129.2, 125.6, 124.0, 123.6, 118.9, 117.3,

114.2, 55.6, 21.3; HRMS (ESI) m/z calcd. For $C_{19}H_{13}BrO_4[M+Na]^+$: 406.9889; Found 406.9839.

2-(Hydroxymethyl)-8-bromo-3-(4-chlorophenyl)-4H-furo[3,2-c]chromen-4-one (3dg):Yield

78%; IR (KBr) v 3439, 2923, 2853, 2360, 2339, 1747, 1627, 1567, 1551, 1492, 1463, 1420, 1353, 1306, 1261 cm⁻¹; ¹H NMR (400 MHz, DMSO-d6) δ 8.08-8.09 (m, 1H), 7.78-7.80 (m, 1H), 7.51-7.61 (m, 5H), 5.70 (br s, 1H), 4.52 (s, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 156.3, 155.1, 154.9, 151.0, ,

133.8, 133.1, 131.7, 128.2, 127.8, 122.9, 120.7, 119.2, 116.7, 113.8, 109.5, 53.7; HRMS (ESI) m/z calcd. For C₁₈H₁₀ClO₄Br[M+Na]⁺: 426.9343; Found 426.9319.

2-(Hydroxymethyl)-8-nitro-3-phenyl-4*H***-furo[3,2-***c***]chromen-4-one (3ea): 63%; IR (KBr) v 3450, 1765, 1745, 1633, 1615, 1524, 1503, 1499, 1422, 1399, 1336, 1254 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) <math>\delta 8.86-8.87 (m, 1H), 8.39-8.42 (m, 1H), 7.56-7.59 (m, 3H), 7.46-7.53 (m, 3H), 4.82 (br s, 2H); ¹³C NMR (100 MHz, CDCl₃) \delta 156.0, 155.8, 155.7, 153.9, 144.1, 129.9, 128.9, 128.6, 128.3, 125.7, 124.2, 118.4 117.4 113.0 110.8 55.6: HRMS (ESI) m/z calcd For CusHuNO2[M+Na]⁺: 360.0479:**

118.4, 117.4, 113.0, 110.8,55.6; HRMS (ESI) m/z calcd. For $C_{18}H_{11}NO_6[M+Na]^+$: 360.0479; Found 360.0544

2-(Hydroxymethyl)-8-nitro-3-(4-methoxyphenyl)-4*H*-furo[**3,2-***c*]chromen-4-one (**3ec**): 67%; 3458, 3086, 2360, 1769, 1633, 1614, 1516, 1496, 1351, 1339, 1293, 1254 cm⁻¹; ¹H NMR (400

MHz, CDCl₃) δ 8.83-8.84 (m, 1H), 8.37-8.40 (m, 1H), 7.55-7.58 (m, 1H), 7.49-7.52 (m, 2H), 7.00-7.03 (m, 2H), 4.80 (br s, 2H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 156.1, 155.7, 155.5, 153.5, 144.1, 131.2, 125.5, 123.9, 120.4, 118.3, 117.3, 114.0, 113.0, 110.7, 55.5, 55.3; HRMS (ESI) m/z calcd. For $C_{19}H_{13}NO_7[M+Na]^+$: 390.0584; Found

390.0588.

General Procedure for the Synthesis of Dihydropyrano[3,2-c]chromene Derivatives (4aa-4ec):

To a stirred solution of 4-hydroxycoumarin (1a, 40.5 mg, 0.25 mmol) and (*E*)-3-aryl-2nitroprop-2-enol (2a-k, 0.3 mmol) in DMSO (0.6 mL) was added L-proline (5.75 mg, 0.05 mmol) at 70 °C for 4-6 h (monitored by TLC). After completion of the reaction, the mixture was extracted with ethyl acetate (3×10 mL), washed with water, and dried with Na₂SO₄. The combined organic phase was concentrated under reduced pressure to afford the crude residue which was purified by column chromatography over silica gel (eluent: EtOAc/hexane = 1:19) to give the pure products **4aa-4ec**. The products were characterized by their corresponding spectroscopic data (IR, ¹H and ¹³C NMR, HRMS). The diastereomeric ratio of the crude product was determined by ¹H NMR spectrum.

Trans-3-nitro-4-phenyl-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one (4aa): Yield 88%; IR

(KBr) v 3441, 2924, 1711, 1631, 1612, 1575, 1554, 1494, 1453, 1404, 1375, 1325, 1271 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.84 (m, 1H), 7.57-7.61 (m, 1H), 7.31-7.39 (m, 5H), 7.27-7.28 (m, 2H), 5.10 (dt, $J_1 = 13.04$ Hz, $J_2 = 2.28$ Hz, 1H), 5.01 (br s, 1H), 4.83-4.84 (m, 1H), 4.40 (dd, $J_1 = 13.04$ Hz, $J_2 = 2.24$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ

161.1, 159.7, 152.7, 138.9, 132.5, 129.4, 128.3, 127.9, 124.2, 122.8, 116.9, 114.4, 99.1, 82.2, 62.8, 38.2; HRMS (ESI) m/z calcd. For $C_{18}H_{13}NO_5[M+Na]^+$: 346.0686; Found 346.0687.

Trans-3-nitro-4-(2-methoxyphenyl)-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one

(4ad):Yield 90%; IR (KBr) v 3446, 2923, 2852, 1710, 1628, 1577, 1550, 1491, 1460, 1437, 1407, 1377, 1357, 1315, 1286, 1271 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.82 (m, 1H), 7.56-7.60 (m, 1H), 7.34-7.37 (m, 1H), 7.27-7.32 (m, 2H), 6.86-6.96 (m, 3H), 5.28 (br s, 1H), 5.05 (dd, J_1 = 12.56 Hz, J_2 = 2.28 Hz, 1H), 4.96 (m, 1H), 4.28-4.31 (m, 1H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2,

160.2, 156.4, 152.7, 132.4, 129.5, 128.6, 126.3, 124.1, 122.7, 120.9, 116.8, 110.8, 99.2, 79.9, 63.6, 55.6, 32.9; HRMS (ESI) m/z calcd. For C₁₉H₁₅NO₆[M+H]⁺ : 354.0972; Found 354.0975

Trans-3-nitro-4-(2-chlorophenyl)-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one (4ah): Yield

85%; IR (KBr) v 3434, 2924, 2853, 1710, 1627, 1611, 1573, 1552, 1493, 1456, 1439, 1405, 1373, 1358, 1314, 1275 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.84 (m, 1H), 7.59-7.63 (m, 1H), 7.49-7.51 (m, 1H), 7.28-7.39 (m, 3H), 7.22-7.26 (m, 1H), 7.05-7.07 (m, 1H), 5.37 (br s, 1H), 5.12 (dd, J_1 = 12.8 Hz, J_2 = 2.28 Hz, 1H), 4.95 (m, 1H), 4.29-4.33 (m,

1H) ; ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 160.4, 152.8, 135.8, 133.9, 132.7, 130.7, 129.7, 129.3, 127.6, 124.3, 122.8, 116.9, 114.3, 98.7, 79.8, 63.2, 35.8; HRMS (ESI) m/z calcd. For C₁₈H₁₂ClNO₅[M+Na]⁺: 380.0296; Found 380.0296.

Figure 1. ORTEP diagram of 4ah.

Table 1. Crystal data for compound 4ah.

Compound	Compound 4ah
Empirical formula	C18 H12 Cl N O5
Molecular weight	357.74
Temperature	150(2) K
Wavelength (Å)	0.7107A
Crystal system, space group	monoclinic, P 21/c

a (Å)	a = 14.7809(9) A
b (Å)	b = 8.0602(3) A
c (Å)	c = 14.9746(8) A
α (°)	alpha = 90 deg.
β (°)	beta =116.158(7) deg.
γ (°)	gamma = 90 deg
Volume (Å ³)	1601.31(14) A^3
Z, Calculated density (mg/m ³)	4, 1.484 Mg/m^3
Absorption coefficient (mm ⁻¹)	0.268 mm^-1
F(000)	736
Crystal size (mm)	0.15 x 0.11 x 0.05 mm
θ range (deg)	2.95 to 25.00 deg.
Limiting indices	-17<=h<=17, -9<=k<=9, -17<=l<=16
Reflections collected / unique	12705 / 2809 [R(int) = 0.0511]
Completeness to $\theta = 25$	99.9 %
Max. and min. transmission	0.9867 and 0.9608
Data / restraints / parameters	2809 / 0 / 226
Goodness-of-fit on F^2	1.072
Final R indices [I>2sigma(I)]	R1 = 0.0579, WR2 = 0.1461
R indices (all data)	R1 = 0.0664, WR2 = 0.1517
Largest diff. peak and hole (e.A ⁻³)	0.281 and -0.313 e.A^-3
CCDC	1011395

Trans-3-nitro-4-(2-methoxyphenyl)-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one

(4aj): Yield 87%; IR (KBr) v 3439, 2925, 2853, 2360, 1710, 1629, 1576, 1553, 1518, 1494, 1454,

1411, 1376, 1350, 1321, 1273 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.23-8.27 (m, 2H), 7.84-7.87 (m, 1H), 7.61-7.66 (m, 1H), 7.49-7.52 (m, 2H), 7.35-7.39 (m, 2H), 5.12-5.20 (m, 2H), 4.85-4.87 (m, 1H), 4.36-4.40 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 160.4, 152.8, 147.8, 146.0, 133.1, 129.0, 124.6, 124.5, 123.0, 117.0, 114.1, 98.3, 81.6, 62.8, 38.3; HRMS (ESI) m/z

calcd. For C₁₈H₁₂N2O₇[M+H]⁺: 369.0717; Found 369.0726.

Trans-3-nitro-4-(2-furyl)-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one (4ak): Yield 85%; IR

(KBr) v 3433, 2924, 2853, 1718, 1631, 1556, 1495, 1456, 1410, 1377, 1359, 1321, 1274 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.81 (m, 1H), 7.55-7.60 (m, 1H), 7.29-7.38 (m, 3H), 6.26-6.35 (m, 2H), 5.20 (dd, $J_1 = 12.8$ Hz, $J_2 = 3.2$ Hz, 1H), 5.06-5.07 (m, 2H), 4.58-4.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 159.5, 152.6, 150.5, 143.0, 132.7,

124.2, 122.9, 116.8, 114.5, 111.0, 109.4, 97.9, 79.0, 64.1, 32.3; HRMS (ESI) m/z calcd. For $C_{16}H_{11}NO_6[M+H]^+$: 314.0659; Found 314.0603.

Trans-3-nitro-4-phenyl-9-methyl-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one (4ba): Yield

93%; IR (KBr) v 3441, 2924, 2853, 2360, 1710, 1634, 1586, 1552, 1494, 1454, 1425, 1397, 1373, 1355, 1306, 1270 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.63 (m, 1H), 7.35-7.40 (m, 3H), 7.30-7.33 (m, 1H), 7.23-7.29 (m, 3H), 5.09 (dd, J_1 = 12.8 Hz, J_2 = 2.28 Hz, 1H), 5.00 (br s, 1H), 4.83 (br s, 1H)), 4.38 (dd, J_1 = 12.8 Hz, J_2 =

2.0 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 159.7, 150.9, 138.9, 134.0, 133.5, 129.4, 128.2, 127.9, 122.5, 116.6, 114.0, 98.9, 82.2, 62.7, 38.3, 20.9; HRMS (ESI) m/z calcd. For C₁₉H₁₅NO₅[M+Na]⁺ : 360.0842; Found 360.0843.

Trans-3-nitro-4-(2-furyl)-9-methyl-3,4-dihydropyrano[3,2-*c*]chromen-5(2*H*)-one (4bk):

Yield 90%; **IR** (KBr) v 3434, 2924, 2853, 1714, 1635, 1586, 1554, 1498, 1455, 1427, 1401, 1374, 1357, 1307, 1277 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.60 (m, 1H), 7.36-7.39 (m, 2H), 7.22-7.25 (m, 1H), 6.25-6.35 (m, 2H), 5.19 (dd, J_1 = 12.8 Hz, J_2 = 2.28 Hz, 1H), 5.05-5.06 (m, 2H), 4.56 (dd, J_1 = 12.8 Hz, J_2 = 3.2 Hz, 1H),

2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 159.5, 150.8, 150.6, 142.9, 134.1, 133.7, 122.6, 116.6, 114.1, 111.0, 109.3, 97.7, 79.0, 64.0, 32.4, 20.9; HRMS (ESI) m/z calcd. For C₁₇H₁₃NO₆[M+Na]⁺: 350.0635; Found 350.0642.

Trans-3,9-dinitro-4-phenyl-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one (4ea): Yield 92%

IR (KBr) v 3464, 1742, 1556, 1527, 1488, 1455, 1401, 1343, 1308, 1258, 1212 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.76-8.77 (m, 1H), 8.44-8.47 (m, 1H), 7.48-7.51 (m, 1H), 7.34-7.43 (m, 4H), 7.27-7.28 (m, 1H), 5.20 (dd, $J_1 = 12.8$ Hz, $J_2 = 3.6$ Hz, 1H), 5.00-5.01 (m, 1H), 4.89-4.90 (m, 1H), 4.46-4.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 158.4, 156.1, 144.1, 138.1, 129.7, 128.7,

127.8, 127.3, 119.5, 118.2, 114.9, 101.0, 81.9, 63.3, 38.3; HRMS (ESI) m/z calcd. For $C_{18}H_{12}N_2O_7[M+Na]^+$: 391.0537; Found 391.0545.

Trans-3,9-dinitro-4-phenyl-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one(4ec):Yield89% NO_2 IR (KBr) v 3456, 2360, 1737, 1643, 1625, 1610, 1557, 1527, 1513, 1487, 1455, 1400, 1341, 1257 cm⁻¹;IH NMR (400 O_2N MHz, CDCl₃) δ 8.75-8.76 (m, 1H), 8.43-8.46 (m, 1H), 7.48-

7.50 (m, 1H), 7.16-7.19 (m, 2H), 6.90-6.93 (m, 2H), 5.17 (dd, $J_1 = 12.8$ Hz, $J_2 = 2.0$ Hz, 1H), 4.85-4.94 (m, 2H), 4.46-4.50

(m, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 159.6, 158.2, 156.0, 144.1, 129.9, 128.9, 127.2, 119.5, 118.1, 115.0, 114.9, 101.3, 82.0, 63.3, 55.4, 37.6; HRMS (ESI) m/z calcd. For C₁₉H₁₄N₂O₈[M+Na]⁺: 421.0642; Found 421.0650.

OMe

References:

1. G. M. Sheldrick, *Acta Crystallogr. Sect. A* **2008**, *A64*, 112-122. *Program for Crystal Structure Solution and Refinement;* University of Goettingen: Goettingen, Germany, 1997.

88 80 Chemical Shift (ppm) . О

