Supporting Information for: Resin-Immobilized Pyrrolidine-Based Chiral Organocatalysts for Asymmetric Michael Additions of Ketones and Aldehydes to Nitroolefins

Richeng Zhang, Guohui Yin, Yang Li, Xilong Yan, and Ligong Chen*

School of Chemical Engineering and Technology, Tianjin University, Tianjin, China. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

E-mail: lgchen@tju.edu.cn

General Methods: ¹H and ¹³C NMR were recorded on Varian-500 or Avance III 600 instruments.Chemical shifts were reported in ppm down field from internal Me4Si. Mass spectra were recorded using electrospray ionization (ESI) on LCQ Advanted MAX Mass instruments. HPLC analysis was measured using ChiralPak AS-H column.

Materials: Commercial reagents were used without purification except for otherwise explanation. Analytical thin layer chromatography was performed on 0.20 mm silica gel plates and silica gel (200-300 mesh) was used for flash chromatography both purchased from Qingdao Haiyang Chem. Company, Ltd..

Preparation of catalysts:

1. Preparation of catalyst 1:

To a stirred solution of L-proline (10 g, 0.1 mol) in dioxane (200 ml) were added K_2CO_3 (16.4 g, 0.12 mol) and benzyl chloride (15 g, 0.12 mol). The mixture was refluxed for 3 hours, then concentrated in vacuo. The residure was dissolved in 200 ml 2 M sodium hydroxide aqueous solution. Then it was extracted by CH₂Cl₂ (200 ml*2). The organic phase was dried by MgSO₄ then purified by column chromatography (CH₃OH:EA=1:10) to afford product **4** (18.1 g, 97.3%), ¹H NMR (600 MHz, CDCl₃) δ : 1.67-1.72 (2H, m), 1.80-1.86 (1H, m), 1.90-1.95 (1H, m), 2.27-2.31 (1H, m), 2.71-2.75 (1H, m), 2.96-2.99 (1H, m), 3.35 (1H, d, *J*=12.6 Hz), 3.41-3.44 (1H, m), 3.64-3.67 (1H, m), 3.87 (1H, d, *J*=13.2 Hz), 7.24-7.33 (5H, m).

To a stirred solution of 4 (11.64 g, 0.06 mol) in CH_2Cl_2 (150 ml) was added triethylamine (8.62 g, 0.085 mol), then the methylsufonyl chloride (9.73 g, 0.085 mol) was added dropwise under ice-bath cooling. The reaction mixture was stirred at room temperature for 2 hours and washed by 100 ml 2 M sodium hydroxide aqueous solution. The organic phase was dried by MgSO₄, filtered, and evaporated to dryness to afford product 5 (16.2 g, 98.8%).

To a stirred solution of **5** (7.0 g, 0.026 mol) in CH₃OH (100 ml) was added piperidine (11.0 g, 0.13 mol). The reaction mixture was refluxed for 12 hours, then concentrated in vacuo to remove CH₃OH and remainder piperidine. The residure was dissolved in 200 ml 2 M sodium hydroxide aqueous solution. Then it was extracted by CH₂Cl₂ (200 ml). The organic phase was dried by MgSO₄ then purified by column chromatography (CH₃OH:EA=1:10) to afford product **6** (4.73 g, 70.6%). ¹H NMR (600 MHz, CDCl₃) δ : 1.22-1.26 (2H, m), 1.41 (2H, m), 1.51-1.74 (8H, m), 1.94-2.00 (1H, m), 2.11-2.15 (1H, m), 2.27-2.31 (1H, m), 2.52-2.55 (1H, m), 2.60-2.65 (1H, m), 2.88-2.92 (1H, m), 3.24 (1H, d, *J*=12.6 Hz), 3.69-3.73 (1H, q, *J*=7.2 Hz), 4.22 (1H, d, *J*=12.6 Hz), 7.21-7.23 (1H, m), 7.28-7.33 (4H, m).

To a solution of **6** (4.73 g, 0.018 mol) in CH₃OH (50 ml) was added Pd/C (10%, 2.5 g). The reaction mixture was stirred at 80 °C, 1.0 MPa H₂ atmosphere for 10 hours. Then the mixture was filtered to remove Pd/C, and purified by column chromatography (ammonia water: CH₃OH=1:30) to afford product **7** (2.26 g, 73.4%). ¹H NMR (600 MHz, CDCl₃) δ : 1.32-1.42 (3H, m), 1.50-1.64 (4H, m), 1.73-1.77 (2H, m), 1.87-1.90 (1H, m), 2.27-2.33 (4H, m), 2.42-2.58 (2H, m), 2.87-3.02 (2H, m), 3.31-3.33 (1H, m).

To a solution of 7 (1.0 g, 5.95 mmol) in CH_2Cl_2 (20 ml) was added activated resin (2.58 g, contain sulfonic acid group 4.96 mmol). The reaction mixture was stirred for 24 hours at room temperature and then filtered. The insoluble substance was washed by CH_2Cl_2 (10 ml*2) and dried at 40 °C for 2 hours to afford catalyst 1. Elemental analysis: C: 53.92%, H: 6.93%, N: 5.21%, S: 9.71%, organic catalyst loading: 1.861 mmol/g.

2. Preparation of catalyst 2:

The product **8** was synthesized from **5** utilizing the similar procedure of synthesizing **6**. The product **8** ¹H NMR (600 MHz, CDCl₃) δ: 1.51-1.73 (2H, m), 1.82-1.99 (2H, m), 2.27 (3H, s), 2.32-2.66 (11H, m), 2.78-2.79 (0.5H, m), 2.89-2.93 (0.5H, m), 3.03-3.05 (0.5H, m), 3.26 (0.5H, d, *J*=13.2 Hz), 3.48-3.54 (1H, m), 3.67-3.71 (1H, m), 7.21-7.33 (5H, m).

The product **9** was synthesized from **8** utilizing the similar procedure of synthesizing **7**. The product **9** ¹H NMR (600 MHz, CDCl₃) δ : 1.29-1.46 (2H,m), 1.69-1.76 (2H, m), 2.26 (3H, s), 2.29-2.60 (10H, m), 2.81-2.86 (1H, m), 2.93-3.00 (1H, m), 3.19-3.27 (1H, m).

To a solution of **9** (1.0 g, 5.46 mmol) in CH_2Cl_2 (20 ml) was added activated resin (4.74 g, contain sulfonic acid group 9.11 mmol). The reaction mixture was stirred for 24 hours at room temperature and then filtered. The insoluble substance was washed by CH_2Cl_2 (10 ml*2) and dried at 40 °C for 2 hours to afford catalyst **2**. Elemental analysis: C: 52.81%, H: 7.22%, N: 4.74%, S: 10.61%, organic catalyst loading: 1.129 mmol/g.

3. Preparation of catalyst 3:

The product **10** was synthesized from **5** utilizing the similar procedure of synthesizing **6**. The product **10** ¹H NMR (600 MHz, CDCl₃) δ : 1.56-1.71 (3H, m), 1.85-1.98 (2H, m), 2.12-2.19 (1H, m), 2.31-2.36 (1H, m), 2.51-2.65 (12H, m), 2.89-2.93 (1H, m), 3.25-3.28 (1H, m), 3.59-3.61 (2H, m), 7.23-7.33 (5H, m).

The product **11** was synthesized from **10** utilizing the similar procedure of synthesizing **5**.

The product **12** was synthesized from **11** utilizing the similar procedure of synthesizing **6**. The product **12** ¹H NMR (600 MHz, CDCl₃) δ: 1.29 (6H, t, *J*=10.8 Hz), 1.73-2.07 (4H, m), 2.41-2.46 (2H, m), 2.49-2.68 (8H, m), 2.78-2.91 (2H, m), 2.93-3.14 (8H, m), 3.47-3.69 (1H, m), 4.26-4.43 (2H, m), 7.27-7.43 (5H, m).

The product **13** was synthesized from **12** utilizing the similar procedure of synthesizing **7**. The product **13** ¹H NMR (600 MHz, CDCl₃) δ: 0.76 (6H, t, *J*=10.8 Hz), 1.06-1.21 (2H, m), 1.47-1.73 (2H, m), 2.02-2.11 (2H, m), 2.21-2.33 (16H, m), 2.56-2.74 (2H, m), 2.93-3.01 (1H, m). ¹³C NMR (150 MHz, CDCl₃) δ: 11.59, 24.75, 29.72, 45.79, 47.24, 49.12, 50.09, 53.54, 55.11, 56.59, 63.76.

To a solution of **13** (1.0 g, 3.73 mmol) in CH_2Cl_2 (20 ml) was added activated resin (4.86 g, contain sulfonic acid group 9.33 mmol). The reaction mixture was stirred for 24 hours at room temperature and then filtered. The insoluble substance was washed by CH_2Cl_2 (10 ml*2) and dried at 40 °C for 2 hours to afford catalyst **3**. Elemental analysis: C: 52.27%, H: 6.95%, N: 4.95%, S: 12.08%, organic catalyst loading: 0.084 mmol/g.

General experimental procedure for the Michael addition of cyclohexanone to nitroalkene by catalyst 1, 2 and 3.

To a solution of cyclohexanone (10 mmol) and nitroalkene (1 mmol) was added resin-immobilized catalyst (contain 0.1 mmol organic catalyst). The mixture was stirred at room temperature for 48 hours. Then the mixture was filtered and washed by CH_2Cl_2 (10 ml*2), and the product was purified by flash chromatography on silica gel. Other asymmetric Michael additions of ketones and aldehydes to nitroolefins utilized the similar procedure.

NMR data and HPLC data for Michael addition products of Table 4. The product of entry 1:

¹H NMR (500 MHz, CDCl₃) δ: 1.10-1.22 (1H, m), 1.43-1.74 (4H, m), 1.96-2.04 (1H, m), 2.27-2.45 (2H, m), 2.57-2.66 (1H, m), 3.67-3.74 (1H, m), 4.58 (1H, dd, *J*=12.5 Hz, 10.0 Hz), 4.89 (1H, dd, *J*=12.5 Hz, 4.5 Hz), 7.10-7.28 (5H, m);

¹³C NMR (125 MHz, CDCl₃) δ: 25.2, 28.6, 33.3, 42.7, 44.2, 52.4, 79.0, 127.8, 128.3, 129.0, 137.7, 211.1

MS (ESI, m/z): 248.1 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =15.4 min (minor), 23.8 min (major).

The product of entry 2:

¹H NMR (500 MHz, CDCl₃) δ : 1.21-1.29 (1H, m), 1.58-1.83 (4H, m), 2.04-2.11 (1H, m), 2.33 (3H, s), 2.36-2.43 (1H, m), 2.47-2.50 (1H, m), 2.66-2.70 (1H, m), 3.70-3.75 (1H, m), 4.60-4.63 (1H, m), 4.91-4.94 (1H, m), 7.05 (2H, d, *J*=8.0 Hz), 7.13 (2H, d, *J*=8.0 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 21.0, 24.8, 28.5, 33.2, 42.6, 43.5, 52.5, 79.1, 127.9, 129.5, 134.5, 137.3, 211.8

MS (ESI, m/z): 266.3 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =10.8 min (minor), 19.8 min (major).

The product of entry 3:

¹H NMR (500 MHz, CDCl₃) δ : 1.18-1.28 (1H, m), 1.56-1.82 (4H, m), 2.05-2.12 (1H, m), 2.34-2.42 (1H, m), 2.46-2.51 (1H, m), 2.61-2.68 (1H, m), 3.68-3.74 (1H, m), 3.79 (3H, s), 4.58-4.61 (1H, m), 4.90-4.93 (1H, m), 6.85 (2H, d, J=8.5 Hz), 7.05 (2H, d, J=8.5 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 24.8, 28.5, 33.1, 42.5, 43.1, 52.4, 55.1, 78.9, 114.1, 129.1, 129.6, 158.8, 211.8.

MS (ESI, m/z): 278.1 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =33.0 min (minor), 47.8 min (major).

The product of entry 4:

¹H NMR (500 MHz, CDCl₃) δ : 1.19-1.28 (1H, m), 1.56-1.83 (4H, m), 2.06-2.13 (1H, m), 2.34-2.42 (1H, m), 2.46-2.52 (1H, m), 2.63-2.67 (1H, m), 3.74-3.78 (1H, m), 4.59-4.63 (1H, m), 4.92-4.96 (1H, m), 7.12-7.14 (2H, m), 7.29-7.33 (2H, m).

¹³C NMR (125 MHz, CDCl₃) δ: 25.1, 28.4, 33.3, 42.6, 43.5, 52.3, 78.4, 129.1, 129.5, 133.5, 136.2, 211.7.

MS (ESI, m/z): 282.0 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =16.3 min (minor), 29.0 min (major).

The product of entry 5:

¹H NMR (500 MHz, CDCl₃) δ : 1.24-1.33 (1H, m), 1.57-1.84 (4H, m), 2.07-2.14 (1H, m), 2.35-2.44 (1H, m), 2.46-2.51 (1H, m), 2.77-2.82 (1H, m), 3.89-3.93 (1H, m), 4.85-4.96 (2H, m), 7.15-7.37 (4H, m).

¹³C NMR (125 MHz, CDCl₃) δ: 25.1, 28.5, 33.2, 41.8, 43.3, 51.8, 77.9, 129.0, 129.8, 134.1, 136.1, 211.7.

MS (ESI, m/z): 282.0 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =16.3 min (minor), 31.0 min (major).

The product of entry 6:

¹H NMR (500 MHz, CDCl₃) δ : 1.31-1.38 (1H, m), 1.59-1.83 (4H, m), 2.09-2.15 (1H, m), 2.37-2.45 (1H, m), 2.47-2.51 (1H, m), 2.90-2.96 (1H, m), 4.27-4.33 (1H, m), 4.87-4.94 (2H, m), 7.20-7.25 (3H, m), 7.36-7.39 (1H, m).

¹³C NMR (125 MHz, CDCl₃) δ: 25.2, 28.5, 33.1, 41.1, 42.8, 51.5, 77.3, 128.8, 130.4,134.7, 135.5, 211.8,

MS (ESI, m/z): 282.1 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =14.0 min (minor), 20.9 min (major).

The product of entry 7:

¹H NMR (500 MHz, CDCl₃) δ : 1.31-1.38 (1H, m), 1.60-1.85 (4H, m), 2.11-2.15 (1H, m), 2.35-2.42 (1H, m), 2.46-2.52 (1H, m), 2.84-2.94 (1H, m), 4.11-4.24 (1H, m),

4.86-4.92 (2H, m), 7.16 (1H, d, *J*=8.5 Hz), 7.24 (1H, dd, *J*₁=8.5 Hz, *J*₂=2.0 Hz), 7.43 (1H, d, *J*=2.0 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 25.1, 27.0, 28.3, 32.9, 40.4, 42.7, 51.5, 77.4, 127.8, 130.0, 133.9, 134.4, 135.2, 211.5.

MS (ESI, m/z): 316.2 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =11.1 min (minor), 20.1 min (major).

The product of entry 8:

¹H NMR (500 MHz, CDCl₃) δ : 1.23-1.31 (1H, m), 1.55-1.84 (4H, m), 2.07-2.14 (1H, m), 2.35-2.44 (1H, m), 2.48-2.54 (1H, m), 2.65-2.69 (1H, m), 3.75-3.81 (1H, m), 4.59-4.63 (1H, m), 4.93-4.96 (1H, m), 7.16-7.21 (2H, m), 7.32-7.38 (2H, m).

¹³C NMR (125 MHz, CDCl₃) δ: 25.0, 28.3, 33.4, 42.5, 43.6, 52.2, 78.5, 129.2, 129.6, 133.4, 140.2, 211.7.

MS (ESI, m/z): 326.0 (M+H⁺), 328.0 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =16.9 min (minor), 30.3 min (major).

The product of entry 9:

¹H NMR (500 MHz, CDCl₃) δ: 1.22-1.32 (1H, m), 1.56-1.77 (3H, m), 1.78-1.85 (1H, m), 2.08-2.16 (1H, m), 2.44-2.35 (1H, m), 2.52-2.45 (1H, m), 2.78-2.69 (1H, m), 3.91-4.01 (1H, m), 4.66-4.73 (1H, m), 4.97-5.05 (1H, m), 7.41 (2H, d, *J*=8.5 Hz), 8.15 (2H, d, *J*=8.5 Hz).

¹³C NMR (125MHz, CDCl₃) δ: 24.9, 28.2, 33.0, 42.4, 43.6, 52.1, 77.9, 123.8, 129.2, 145.5, 147.3, 210.9.

MS (ESI, m/z): 315.1 (M+Na⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=7:3), 1.0 ml/min; t_r =30.0 min (major).

The product of entry 10:

¹H NMR (500 MHz, CDCl₃) δ : 1.19-1.29 (1H, m), 1.57-1.83 (4H, m), 2.05-2.11 (1H, m), 2.36-2.44 (1H, m), 2.46-2.51 (1H, m), 2.62-2.68 (1H, m), 3.69-3.75 (1H, m), 3.79 (3H, s), 4.57-4.61 (1H, m), 4.90-4.94 (1H, m), 6.85 (2H, d, *J*=8.5 Hz), 7.08 (2H, d, *J*=8.5 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 25.1, 28.1, 33.0, 41.9, 42.7, 52.1, 77.5, 124.7,

128.4, 129.0, 132.8, 133.0, 150.7, 211.1.

MS (ESI, m/z): 293.2 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=7:3), 1.0 ml/min; t_r =14.1 min (minor), 18.4 min (major).

The product of entry 11:

¹H NMR (500 MHz, CDCl₃) δ: 2.52-2.57 (1H, m), 2.60-2.68 (1H, m), 2.85-2.90 (1H, m), 3.26 (1H, dd, *J*_{*I*}=20.0 Hz, *J*₂=8.5 Hz), 3.64-3.86 (3H, m), 4.11-4.18 (1H, m), 4.62-4.68 (1H, m), 4.94 (1H, dd, *J*_{*I*}=12.5 Hz, *J*₂=4.5 Hz), 7.18-7.35 (5H, m).

¹³C NMR (125 MHz, CDCl₃) δ: 41.3, 42.8, 53.4, 68.8, 71.5, 78.5, 127.7, 128.3, 129.1, 136.3, 208.3.

MS (ESI, m/z): 250.1(M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =28.9 min (minor), 38.8 min (major).

The product of entry 12:

¹H NMR (500 MHz, CDCl₃) δ: 2.14 (3H, s), 2.93 (2H, d, *J*=5.0 Hz), 3.99-4.04 (1H, m), 4.58-4.63 (1H, m), 4.68-4.73 (1H, m), 7.21-7.55 (5H, m).

¹³C NMR (125 MHz, CDCl₃) δ: 30.3, 39.0, 46.1, 55.4, 79.4, 127.2, 127.9, 129.1, 138.8, 205.6.

MS (ESI, m/z): 208.0 (M+H+)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =30.2 min (minor), 37.1 min (major).

The product of entry 13:

¹H NMR (500 MHz, CDCl₃) δ : 0.98 (3H, d, *J*=7.5 Hz,), 1.08 (3H, t, *J*=7.5 Hz), 2.34–2.44 (1H, m), 2.55–2.65 (1H, m), 2.93–3.02 (1H, m), 3.67–3.72 (1H, m), 4.58 (1H, dd, *J*_{*I*}=12.5 Hz, *J*₂=4.5 Hz), 4.65 (1H, dd, *J*_{*I*}=12.5 Hz, *J*₂=9.0 Hz), 7.14–7.16 (2H, m), 7.24–7.32 (3H, m).

¹³C NMR (125 MHz, CDCl₃) δ: 7.1, 14.4, 35.5, 45.9, 49.0, 77.8, 128.8, 138.5, 212.7.

MS (ESI, m/z): 236.2(M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-

H column at 254 nm (hexane:2-propanol=95:5), 1.0 ml/min; t_r=11.8 min (minor), 16.7 min (major).

The product of entry 14:

¹H NMR (500MHz, CDCl₃) δ: 1.56-1.78 (2H, m), 1.78-1.97 (2H, m), 2.04-2.54 (3H, m), 3.66–3.73 (1H, m), 5.02 (1H, d, *J*=8.5 Hz), 7.15-7.35 (5H, m).

¹³C NMR (125 MHz, CDCl₃): 20.1, 28.1, 38.5, 44.0, 50.3, 78.1, 127.7, 127.9, 128.3, 137.3, 218.4.

MS (ESI, m/z): 266.1 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =16.5 min (minor), 28.7 min (major).

The product of entry 15:

¹H NMR (500 MHz, CDCl₃) δ: 1.21-1.31 (1H, m), 1.42-1.83 (6H, m), 1.99-2.07 (1H, m), 2.28-2.47 (2H, m), 2.58-2.69 (1H, m), 3.70-3.77 (1H, m), 4.61-4.64 (1H, m), 4.89-4.93 (1H, m), 7.11-7.29 (5H, m).

¹³C NMR (125 MHz, CDCl₃) δ: 24.9, 26.3, 28.5, 33.5, 43.1, 44.5, 52.7, 79.7, 127.8, 128.5, 129.0, 138.5, 211.5

MS (ESI, m/z): 262.1 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=95:5), 1.0 ml/min; t_r =15.6 min (minor), 26.0 min (major).

The product of entry 16:

¹H NMR (500 MHz, CDCl₃) δ: 0.99 (3H, d, *J*=9.0 Hz), 2.71-2.83 (1H, m), 3.75-3.80 (1H, m), 4.61-4.69 (1H, m), 4.72-4.78 (1H, m), 7.16-7.35 (5H, m), 9.72 (1H, d, *J*=2.0 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 12.2, 44.0, 48.5, 78.1, 128.0, 128.1, 129.1, 136.6, 202.1.

MS (ESI, m/z): 208.2 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=8:2), 1.0 ml/min; t_r =22.6 min (major), 32.1 min (minor).

The product of entry 17:

¹H NMR (500 MHz, CDCl₃) δ: 0.81-0.92 (3H, m), 1.48-1.56 (2H, m), 2.66-2.72 (1H, m), 3.77-3.83 (1H, m), 4.61-4.75 (2H, m), 7.18-7.21 (2H, m), 7.29-7.38 (2H, m),

9.72 (1H, d, *J*=2.5 Hz).

¹³C NMR (125 MHz, CDCl₃) δ: 10.8. 20.5, 42.7, 55.0, 78.4, 128.0, 128.1, 129.1, 136.7, 203.1.

MS (ESI, m/z): 222.3 (M+H⁺)

The enantiomeric excess was determined by chiral HPLC with a Chiralpack AS-H column at 254 nm (hexane:2-propanol=9:1), 1.0 ml/min; t_r =12.7 min (major), 26.1 min (minor).

NMR of compound **13**:

¹³C NMR

HPLC analysis results:

			-	
1	14.790	53826.652	5476112.000	53.3610
2	23. 573	33581.625	4786269.500	46.6390
Total		87408.277	10262381.500	100.0000

Analysis Result				
Peak#	RT(min)	Height(µV)	Area(µV*Sec) Area%
1	15.368	7077.769	417198.844	4.1927
2	21.612	3024.380	209476.609	2.1052
3	23.793	73270.852	9323860.000	93.7021
Total		83373.000	9950535.453	100.0000

Analysis Result Peak# RT(min) Height(µV) Area(µV*Sec) Area% 10.760 19.495 50. 3714 49. 6286 122714.406 9017093.000 1 2 61737.625 8884140.000 184452.031 100.0000 17901233.000 Total

Analysis Result					
Peak#	RT(min)	Height(µV)	Area(µV*Sec) Area%	
1	10.847	19730.707	863682.000	7.5368	
2	16.670	1971.928	123015.492	1.0735	
3	19.742	89059.398	10472875.000	91.3898	
Total		110762.034	11459572.492	100.0000	

Analysis Result				
Peak#	RT(min)	Height(µV)	Area(µV∗Sec)	Area%
1	32.965	21500.307	4407238.500	11.3307
2	40.098	10788.599	1996650.750	5.1333
3	47.832	95503.383	32492468.000	83.5360
Total		127792.288	38896357.250	100.0000

Peak#	RT(min)	Height(µV)	Area(µV*Sec	;) Area%
1	16.237	5890. 376	367247.406	5.4995
2	25. 337	4461.787	441692.156	6.6143
3	29.032	37642.684	5868873.000	87.8862
Total		47994.847	6677812.563	100.0000

геака	KI (#111/	nergn((µ))	Area (µ1+Sec)	NICAN
1	16.278	10285.205	1043212.188	9.7476
2	23.150	3238.591	422838.594	3.9509
3	31.010	39538.008	9236197.000	86.3015
Total		53061.804	10702247.781	100.0000

Analysis Result Height(µV) Area(µV∗Sec) Area% RT(min) Peak# 13.125 46.2078 56786.285 4738040.000 1 2 18.763 41309.098 5515724.000 53.7922 100.0000 98095.383 10253764.000

Analysis Result					
Peak#	RT(min)	Height(µV)	Area(µV*Sec)	Area%	
1	14.040	11324.587	574376.563	7.7897	
2	18.400	2097.152	65977.453	0.8948	
3	20.893	66391.016	6733215.500	91.3156	
Total		79812.754	7373569. 516	100.0000	

Analysis Result Peak# RT(min) Height(μ∀) Area(μ∀*Sec) Area%

Total		122365.941	11713209.000	100.0000	
2	18.368	43301.738	6009399.000	51.3045	
1	10.303	79064.203	5703810.000	48.6955	

Analysis Result					
Peak#	RT(min)	Height(µV)	Area(µV*Sec)	Area%	
1	11.098	15992.151	942723.563	14.0263	
2	20.080	56700. 484	5778410.000	85.9737	
Total		72692.636	6721133.563	100.0000	

Analysis Kesult					
Peak#	RT(min)	Height(µV)	Area(µV*Sec)	Area%	
1	16.868	28380.660	3373223.000	13.0806	1
2	25.693	6694.212	920293.563	3.5687	
3	30. 315	80084.531	21494562.000	83.3508	
Total		115159.403	25788078.563	100.0000	

Analysis Result Height(µV) Area(µV*Sec) Area% RT(min) Peak# 82421.938 14435415.000 21.398 48.6479 1 2 30.598 63457.465 15237813.000 51.3521 145879.402 29673228.000 100.0000

Analysis Result				
Peak#	RT(min)	Height(µV)∦	lrea(µV*Sec)	Area%
1	29.957	615853.938	129882296.000	100.0000
Total		615853.938	129882296.000	100.0000

Analysis Result Height(µV) Area(µV*Sec) Area% Peak# RT(min) 13.798 17.273 142498.188 12231177.000 45.9604 122675.844 14381274.000 54.0396

Analysis Result					
Peak#	RT(min)	Height(µV)	Area(µV*Sec	:) Area%	
1	14.072	67007.227	4308485.500	7.4579	
2	18.387	551076.938	53462024.000	92.5421	

618084.164

57770509.500

100.0000

Tota	1 1
------	------------

1

Analysis Result				
Peak#	RT(min)	Height(µV)∦	Area(µV∗Sec)	Area%
1	30. 137	10763.868	1999865.000	10.6702
2	38.718	41913.688	16742610.000	89.3298
Total		52677.556	18742475.000	100.0000

Analysis Result				
Peak#	RT(min)	Height(µV)	Area(µV∗Sec)	Area%
1	30.190	46975.465	5997621.500	42.5935
2	37.107	32434.793	8083439.000	57.4065
Total		79410.258	14081060.500	100.0000

Analysis Result Height (μV) Area(μV*Sec) Area% Peak# RT(min) 11.832 101463.625 10048938.000 48.6692 1 2 16.765 77076.828 10598503.000 51.3308 178540.453 100.0000 Total 20647441.000

Analysis Result				
Peak#	RT(min)	Height(µV)	Area(µV*Sec)	Area%
1	11.933	6792.436	497742.656	5.2073
2	16.207	64870.738	9060862.000	94.7927
Total		71663.174	9558604.656	100.0000

 Analysis Result

 Peak#
 RT (min)
 Height (μV)
 Area (μV*Sec)
 Area%

 1
 14.098
 40058.582
 4808921.500
 58.0789

 2
 23.413
 21163.809
 3471055.750
 41.9211

Total

128770.976

11964202.375

100.0000

Total

Analysis Result Height(µV) Area(µV∗Sec) _{Area%} Peak# RT(min) 17.303 168673.984 49.6842 22888412.000 1 2 30.808 92737.172 23179366.000 50.3158 261411.156 46067778.000 100.0000

Analysis Result				
Peak#	RT(min)	Height(µV)	Area(µV∗Sec)	Area%
1	22.547	14475.535	1706031.375	59.5330
2	30.110	2395.877	140047.266	4.8870
3	32.038	10872.851	1019613.938	35.5800
Total		27744.262	2865692.578	100.0000

Analysis Result Height(µV) Area(µV*Sec) Area% Peak# RT(min) 12.773 21.715 129417.828 13990152.000 50.3537 1 2 49.6463 78343.961 13793603.000 207761.789 27783755.000 100.0000 Total

Analysis Result				
Peak#	RT(min)	Height(µ∛)	Area(µV*Sec)	Area%
1	12.743	79898.023	3736924.000	37.0849
2	13.912	47119.488	3646401.500	36.1865
3	20.942	10112.525	788804.625	7.8280
4	26.053	20122.066	1904552.625	18.9006
Total		157252.104	10076682.750	100.0000

Column model: Agilent Prep-C18 Scalar PN440910-902; Mobile phase: CH₃OH:H₂O=3:2; Flow rate: 0.7 mL/min; Injected volume: 10µL

Concentration: 0.2 mol/L

Concentration: 0.4 mol/L

Column model: Agilent Prep-C18 Scalar PN440910-902; Mobile phase: CH₃OH:H₂O=3:2; Flow rate: 0.7 mL/min; Injected volume: 10µL

Concentration: 0.025 mol/L

Concentration: 0.05 mol/L

Concentration: 0.10 mol/L

