Supplementary Material (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry 2014

Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures

Supplementary Material

Xiao-Heng He,^a Wei Wang,^{*a} Ke Deng,^a Rui Xie,^a Xiao-Jie Ju,^a Zhuang Liu,^a and Liang-Yin Chu^{*a,b}

- ^a School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China *E-mail:* wangwei512@scu.edu.cn (W. Wang), chuly@scu.edu.cn (L.-Y. Chu); Tel & Fax:
 +86 28 8546 0682
- ^b State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology, Sichuan University, Chengdu, Sichuan, China

Microfluidic fabrication of controllable chitosan microfibers

Fig. S1 Schematic diagram of the microfluidic fabrication of solid chitosan microfiber. (a) Microfluidic device for preparing the chitosan microfiber. (b) Different cross-sections of the chitosan microfiber illustrating the crosslinking process.

Fig. S2 Structure control of the jet templates by changing flow rates. (a) High-speed snapshots of jet templates under different flow rate conditions. The scale bar is 500 μ m. (b) Effect of Q_{sample} and Q_{sheath} on the diameter of the jet templates.

Fig. S3 Morphological characterization of solid chitosan microfibers. (a) Digital photo of the chitosan microfibers dyed with Eosin Y. The scale bar is 1 cm. The insert picture shows a swatch of fabric that is woven from the chitosan microfibers. The scale bar is 1 mm. (b) Optical micrograph of the chitosan microfibers dyed with Eosin Y. The scale bar is 200 μ m. (c,d) SEM images of the outer surface (c) and cross-section (d) of the air-dried solid chitosan microfibers. The scale bars are 100 μ m.

Mechanical property of chitosan microfibers

Fig. S4 Mechanical properties of chitosan microfibers. (a) Schematic diagram showing the three types of chitosan microfibers for the mechanical property test. (b) The stress-strain curves of the three types of chitosan microfibers. (c) Effect of shell thickness (δ) on the tensile strength (σ_b) of the chitosan microfibers.

Туре	δ / μ m	$\sigma_{ m b}$ / MPa	e / %	E / MPa
A	50	56.7±4.3	2.6±0.5	2185.4±295.7
В	20	29.3±4.0	2.5±0.4	1362.8±243.1
С	10	19.7±2.4	2.6±0.8	875.7±127.0

 Table. S1
 Mechanical properties of three types of chitosan microfibers

Note: The symbol " δ " is the fiber thickness and calculated by (*OD-ID*)/2, " σ_b " represents the tensile strength, " ε " represents the fracture strain, and "*E*" represents the Young's modulus.