Supporting information

Colloidal Cu₂Zn(Sn_{1-x}Ge_x)S₄ Nanocrystals: Electrical Properties and their Comparison between Wurtzite and Kesterite Structure

Yingwei Li, Wuding, Ling, Qifeng Han*, and Wangzhou Shi

Key Laboratory of Optoelectronics Materials and Devices, Shanghai Normal University, Shanghai, China

Figure S1 EDS results for (a) S1-TH, (b) S2-TH, (c) S3-TH, (d) S4-TH, and (e) S5-TH NCs prepared with SC(NH₂)₂, suggesting CZTS NCs are Cu-rich and Zn-poor while CZGS NCs are of more satisfactory Cu-poor and Zn-rich constituent.

Figure S2 Band gap of wurtzite-dominant $Cu_2Zn(Sn_{1-x}Ge_x)S_4$ as a function of composition *x*.

Figure S3 (a) XRD patterns of kesterite $Cu_2Zn(Sn_{1-x}Ge_x)S_4$ NCs.(b) Enlarged view in which the peaks ascribing to (112) planes of tetragonal structure shift to higher 2θ due to incorporation of Ge.

Figure S4 Top-view SEM images for (a) wurtzite CZTS, (c) wurtzite CZGS, (e) kesterite CZTS, and (g) kesterite CZGS films fabricated from corresponding NCs dispersions, and annealed at 350°C for 5 min. Cross-section SEM images for (b) wurtzite CZTS, (d) wurtzite CZGS, (f) kesterite CZTS, and (h) kesterite CZGS films.

Figure S5 EDS results for (a) S1-S, (b) S2-S, (c) S3-S, (d) S4-S, and (e) S5-S NCs prepared with sulfur element.

Figure S6 Current-voltage (*I-V*) curves of the $Cu_2Zn(Sn_{1-x}Ge_x)S_4$ films made from kesterite NCs dispersions of (a) S1-S, (b) S2-S, (c) S3-S, (d) S4-S, and (e) S5-S tested in dark (black) and under illumination (red).