Supplementary Information for the Manuscript

Size-dependent photoluminescence of zinc oxide quantum dots

through organosilane functionalization

Viorica Mușat,^{*,a} Aurel Tăbăcaru,^a Bogdan Ștefan Vasile,^b Vasile-Adrian Surdu^b

*Corresponding author

E-mail address: viorica.musat@ugal.ro; telephone: +40-757070613.

Synthesis of ZnO QDs grafted with MPS

ZnO QDs were synthesized according to a slightly modified precipitation method reported in the literature.¹ For the sake of completeness, we give the detailed synthetic procedure, as follows: in 10 mL of methanol heated in a 100 mL round bottomed flask until 55 °C, different amounts of 3-(trimethoxysilyl)propylmethacrylate (MPS) were added in order to reach the Si/Zn molar ratio of 0, 2, 5 and 10%. After a further heating to 60 °C for 10 min, zinc acetate dihydrate was added in the reaction vessel. A basic solution of 1.25 g of potassium hydroxide, separately dissolved in 5 mL of methanol, was added dropwise. The white suspensions so obtained were stirred for 3 hours under reflux, centrifuged (9000 rpm, 5 min), washed with three portions of methanol (10 mL), and finally dried in air at 100 °C for three hours.

	ZnO	ZnO-MPS 2%	ZnO-MPS 5%	ZnO-MPS 10%	
Crystal System	Hexagonal	Hexagonal	Hexagonal	Hexagonal	
SPGR, Z	$P6_3mc, 2$	$P6_3mc, 2$	$P6_{3}mc, 2$	$P6_{3}mc, 2$	
<i>a</i> , Å	3.250083447	3.250510216	3.24973011	3.249323368	
<i>b</i> , Å	3.250083447	3.250510216	3.24973011	3.249323368	
<i>c</i> , Å	5.206603527	5.207901001	5.209373951	5.212234497	
<i>a</i> , °	90	90	90	90	
β, °	90	90	90	90	
γ, °	120	120	120	120	
<i>V</i> , Å ³	47.6293	47.65368	47.64428	47.65835	
Mean crystallite size (nm)	7.569	5.24	4.342	4.189	
<i>Т</i> , К	298	298	298	298	
$R_{\rm p}, R_{\rm wp}$	5.8606, 7.5951	6.7876, 8.3636	7.1158, 8.5534	7.2465, 8.8305	
Rexpected	5.5439	5.5114	5.5391	5.3924	
GoF	1.8768	2.3028	2.3845	2.6817	

Table S1. Relevant crystallographic data for the unmodified ZnO and MPS-grafted ZnO QDs

Figure S1. Electron diffraction patterns of unmodified ZnO (A), ZnO-MPS 2% (B),

ZnO-MPS 5% (C) and ZnO-MPS 10% (D).

Figure S2. Infrared spectrum of free MPS

Hydrolysis 1: $Zn(CH_3COO)_2 + 2KOH \longrightarrow Zn(OH)_2 + 2CH_3COOK$

Scheme S1. Reaction schemes for MPS grafting of ZnO QDs

Sample	Proposed formula	Elem. Anal. (found)		Elem. Anal. (calcd.)	
	-	C (%)	H (%)	C (%)	H (%)
ZnO	$(ZnO)_{25}Zn_2(OH)_2(CH_3COO)_2(H_2O)_2$	2.089	0.485	2.041	0.513
ZnO-MPS 2%	(ZnO) ₃₁ Zn ₂ (OH) ₄ (CH ₃ COO)(C ₇ H ₁₁ O ₅ Si)(H ₂ O) ₂	3.567	0.746	3.579	0.734
ZnO-MPS 5%	(ZnO) ₃₃ Zn ₃ (OH) ₇ (CH ₃ COO)(C ₇ H ₁₁ O ₅ Si) ₂ (H ₂ O) ₂	5.434	1.037	5.487	1.036
ZnO-MPS 10%	$(ZnO)_{41}Zn_4(OH)_{10}(CH_3COO)(C_7H_{11}O_5Si)_3(H_2O)_3$	6.111	1.151	6.151	1.167

Table S2. Proposed stoechiometric formulae of unmodified ZnO and MPS-modified ZnO QDs

REFERENCES

¹ M. Kotecha, W. Veeman, B. Rohe, M. Tausch, *Microporous and Mesoporous Materials* 2006, **95**, 66.