Electronic Supplementary Information

Simple and green synthesis ofnitrogen-, sulfur- and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application

Chunfeng Wang, Dong Sun, Kelei Zhuo*, Hucheng Zhang, Jianji Wang*

Figures

Fig. S1 High-resolution XPS spectra on P_{2p} (a) and S_{2p} (b) in N/S/P-CDs.

Fig. S2 Fluorescence decay curve and the exponential fitting curve of N/S/P-CDs-100 (a), N/S/P-CDs-120 (b) and N/S/P-CDs-150 (c) recorded at room temperature in aqueous solution. The fiting formula: $F(t) = A + B_1 e^{-t/\tau_1} + B_2 e^{-t/\tau_2} + B_3 e^{-t/\tau_3}$, where, t is time, A is a constant background, B_1 , B_2 , and B_3 are fractional intensities, τ_1 , τ_2 , and τ_3 are fluorescence lifetime. The amplitude-weighted average fluorescence lifetime, $\langle \tau \rangle = \frac{B_1 \tau_1 + B_2 \tau_2 + B_3 \tau_3}{B_1 + B_2 + B_3}$

Tables

Sample	QY / %	Average lifetimes / ns
N/S/P-CDs-100	2.42	2.83
N/S/P-CDs-120	3.25	2.65
N/S/P-CDs-150	1.72	1.85

Table S1 The quantum yield (QY) and average lifetimes of different N/S/P-CDs.

Table S2 Results of Hg²⁺ detection in river water using photoluminescent N/S/P-CDs-120 (*n*=3)

Sample	Added Hg^{2+} / μM	Found Hg^{2+} / μM	RSD / %	Recovery / %
river water 1	0	No detected	_	_
river water 2	20.0	20.2	1.7	101.0
river water 3	50.0	51.2	1.3	102.4