Improved low-temperature activity of La-Sr-Co-O nano-composite

for CO oxidation by phase cooperation

Linyun Zhong, Fang Hai, Ping Xiao, Jingping Hong and Junjiang Zhu

Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs & Commission Ministry of Education, South-Central University for Nationalities

Table of contents

Experimental section

Figure S1. XRD patterns for the series of La-B-O samples (B = Fe, Co, Ni, Cu)

Figure S2. TEM images for (A) Co_3O_4 , (B) La-Co-O prepared without template PMMA, (C) La-Co-O prepared with template PMMA

Figure S3. (A) La 3d, (B) Sr 3d, (C) Co 2p and (D) O 1s spectra for La_{1-x} -Sr_x-Co-O surveyed from the XPS measurements

Figure S4. N_2 physisorption isotherms of the $La_{0.7}$ -Sr_{0.3}-Co-O and the porous $LaCoO_3$ prepared using PMMA as template

Figure S5. (A) O₂-TPD and (B) H₂-TPR profiles of Co₃O₄, La_{0.7}Sr_{0.3}CoO₃ and La_{0.7}-Sr_{0.3}-Co-O

Figure S6. CO oxidation activity obtained from the La-Co-O sample prepared with and without template PMMA

Figure S7. Long-term stability of Co_3O_4 for CO oxidation within 36 h conducted at 145 °C

Figure S8. Characteristic results from XRD, N_2 physisorption isotherms and XPS for the used $La_{0.7}$ -Sr_{0.3}-Co-O

Table S1. Comparison in the activity ($T_{ign.}$, T_{50} and T_{100}) of La_{0.7}-Sr_{0.3}-Co-O with that of LaCoO₃ reported in literature

Experimental

Catalyst's Preparation.

The samples were prepared by a sol-gel method using ethylene glycol and formic acid as complexing agents. Briefly, 5 mmol of La(NO₃)₃ and/or Sr(NO₃)₂, and 5 mmol of Co(NO₃)₃, Fe(NO₃)₃, Ni(NO₃)₂, Cu(NO₃)₂ or Zn(NO₃)₂ were first dissolved in a mixed solution containing 3 mL ethylene glycol and 2 mL formic acid and stirred for 6 h. The resulting solution was then aged at 95 °C overnight, yielding a gel-like product, which was calcined in a static air oven at 600 °C for 5 h (heating rate 1 °C min⁻¹). Such obtained samples showed a multi-phase structure and thus were denoted as La_{1-x}-Sr_x-B-O (B = Fe, Co, Ni, Cu, $0 \le x \le 0.7$). For comparison, a perovskite La_{0.7}Sr_{0.3}CoO₃ was prepared by calcination at 800 °C, and a metal oxide Co₃O₄ was prepared without the addition of La or Sr, with otherwise identical conditions.

Catalyst's Characterizations

X-Ray diffraction (XRD) patterns were collected using a Bruker D8 Advance Xray diffractometer with Cu K α ($\lambda = 1.5406$ Å) irradiation; Transmission electron microscopy (TEM) images were obtained on a Tecnai G² 20 S-Twin apparatus with high-resolution transmission electron microscope (200 kV). The sample was dispersed in ethanol by ultrasonic method before being deposited on the copper mesh. N₂ physisorption isotherms were measured on a TriStar II 3020 measurement at liquid nitrogen temperature (-196 °C) and the surface areas were calculated using the Brunauer–Emmett–Teller (BET) method. Before measurement the sample was treated in vacuum at 200 °C for 5 h. X-ray photoelectron spectroscopy (XPS) spectra were recorded on a Thermo Electron Corporation VG Multilab 2000 apparatus using a monochromatic Al Ka X-ray source (300 W) and analyzer pass energy of 25 eV. Binding energies were obtained by referencing to the C 1s binding energy of carbon taken at 284.6 eV.

Temperature-programmed reduction by H₂ (H₂-TPR) was performed on a

FINESORB-3010 apparatus (Fantai technology company, China) equipped with TCD detector. The sample (0.10 g) was first treated in Ar atmosphere at 500 °C for 1 h and then cooled to room temperature. Thereafter 10 vol.% H₂/Ar mixture with flow rate of 25 cm³ min⁻¹ was switched on. After a stabilized baseline is reached, the sample was heated from RT to 800 °C at a rate of 10 °C min⁻¹ to record the profile.

Temperature-programmed desorption of O_2 (O_2 -TPD) was carried out on the same apparatus. The sample (0.10 g) was first treated in O_2 atmosphere at 500 °C for 1 h and then cooled to room temperature. Thereafter Helium with flow rate of 25 cm³ min⁻¹ was switched on. After a stabilized baseline is reached, the sample was heated from RT to 800 °C at a rate of 10 °C min⁻¹ to record the profile.

Catalytic tests

Catalytic tests were measured using a continuous flow fixed-bed quartz microreactor (*i.d.* = 8 mm) equipped with a temperature programmed controller at atmospheric pressure. 0.1 g catalyst was loaded into the microreactor without dilution. The reactant 0.5% CO + 7.5% O₂ in Ar was passed at a flow rate of 50 mL min⁻¹, corresponding to space velocity (SV) of ca. 30,000 mL g⁻¹ h⁻¹. The effluent gases were analyzed by an on-line GC (Agilent 7890) equipped with a thermal conductivity detector and two packed columns (Porapak Q and 5A molecular sieve columns). CO oxidation activity was evaluated in terms of CO conversion: % Conversion = {[CO]_{in} - [CO]_{out}} / [CO]_{in} * 100, where [CO]_{in} and [CO]_{out} represent the inlet and outlet concentration of CO, respectively.

Figure S1. XRD patterns for the series of La-B-O samples (B = Fe, Co, Ni, Cu)

Figure S2. TEM images for (A) Co_3O_4 , (B) La-Co-O prepared without template PMMA, (C) La-Co-O prepared with template PMMA

Figure S3. (A) La 3d, (B) Sr 3d, (C) Co 2p and (D) O 1s spectra for La_{1-x} -Sr_x-Co-O surveyed from the XPS measurements

Figure S4. N₂ physisorption isotherms of the $La_{0.7}$ -Sr_{0.3}-Co-O and the porous $LaCoO_3$ prepared using PMMA as template

Figure S5. (A) O₂-TPD and (B) H₂-TPR profiles of Co₃O₄, La_{0.7}Sr_{0.3}CoO₃ and La_{0.7}-Sr_{0.3}-Co-O

Figure S6. CO oxidation activity obtained from the $LaCoO_3$ sample prepared with and without template PMMA

Figure S7. Long-term stability of Co_3O_4 for CO oxidation within 36 h measured at 145 °C

Figure S8. Characteristic results from XRD, N_2 physisorption isotherms and XPS for the fresh and used La_{0.7}-Sr_{0.3}-Co-O

Catalyst	T _{ign.} ^a	$T_{50}{}^{b}$	T_{100}^{c}	Reaction conditions	Refs.
La _{0.7} -Sr _{0.3} -Co-O	75	130	174	0.5% CO, 7.5% O ₂ , WHSV = 30000 mL/ (g h)	This work
La-Co-O	100	150	200	0.5% CO, $7.5%$ O ₂ , WHSV = 30000 mL/ (g h)	This work
LaCoO ₃ (porous)	60	145	175	0.5% CO, $7.5%$ O ₂ , WHSV = 30000 mL/ (g h)	1
LaCoO ₃ (Nano-sized)	100	161	200	1% CO, 20% O ₂ , WHSV = 10000 mL/(g h)	2
LaCoO ₃ (spherical)	70	131	170	1% CO, 20% O ₂ , WHSV = 10000 mL/(g h)	2
LaCoO ₃ (3DOM)	50	162	190	1% CO, 20% O ₂ , WHSV = 10000 mL/(g h)	3
LaCoO ₃	120	182	215	1% CO, 20% O ₂ , WHSV = 10000 mL/(g h)	3
LaCoO ₃ (porous)	110	170	207	1% CO, 21% O ₂ , WHSV = 3000 mL/ (g h)	4
LaCoO ₃	140	187	237	1% CO, $21%$ O ₂ , WHSV = 3000 mL/ (g h)	4
$La_{0.9}K_{0.1}CoO_3$	160	245	335	Not applicable from the literature	5
LaCoO ₃	130	205	246	0.5% CO, 10% O ₂ , SV = 96,000 h ⁻¹	6
LaCoO ₃	160	238	270	2% CO, 20% O ₂ , SV = 6000 h ⁻¹	7
LaCoO ₃	115	172	210	$0.5\%~CO$, 10% $O_2,~SV=30,000~h^{-1}$	8
LaCoO ₃	260	280	400	2% CO, $1%$ O ₂ , WHSV = 30000 mL/ (g h)	9

Table S1. Comparison in the activity ($T_{ign.}$, T_{50} and T_{100}) of La_{0.7}-Sr_{0.3}-Co-O with that of LaCoO₃ reported in literature

a Ignition temperature for CO oxidation; b Temperature for 50% CO conversion; c Temperature for 100% CO conversion

References

- 1. P. Xiao, J. Zhu, H. Li, W. Jiang, T. Wang, Y. Zhu, Y. Zhao and J. Li, *ChemCatChem*, 2014, **6**, 1774-1781.
- Y. Liu, H. Dai, J. Deng, L. Zhang, Z. Zhao, X. Li, Y. Wang, S. Xie, H. Yang and G. Guo, *Inorg. Chem.*, 2013, 52, 8665-8676.
- 3. X. Li, H. Dai, J. Deng, Y. Liu, S. Xie, Z. Zhao, Y. Wang, G. Guo and H. Arandiyan, *Chem. Eng. J.*, 2013, **228**, 965-975.
- 4. Y. Wang, X. Cui, Y. Li, Z. Shu, H. Chen and J. Shi, *Micropor. Mesopor. Mater.*, 2013, **176**, 8-15.
- 5. Q. Thi Hoang Yen, T. Thi Minh Nguyet, T. Que Chi, N. Quoc Trung, N. Thi Toan and L. Dang Khuong, *Adv. Nat. Sci.: Nanosci. Nanotechnol.*, 2011, **2**, 045007.
- 6. S. Sun, L. Yang, G. Pang and S. Feng, *Appl. Catal. A: Gen.*, 2011, **401**, 199-203.
- 7. S. A. Nedil'ko, I. V. Fesich, A. G. Dzyaz'ko, O. Z. Didenko, G. R. Kosmambetova and P. E. Strizhak, *Theor. Exp. Chem.*, 2011, **47**, 183-187.
- 8. P. Doggali, S. Kusaba, Y. Teraoka, P. Chankapure, S. Rayalu and N. Labhsetwar, *Catal. Commun.*, 2010, **11**, 665-669.
- 9. B. Seyfi, M. Baghalha and H. Kazemian, *Chem. Eng. J.*, 2009, **148**, 306-311.