# **Electronic Supplementary Information**

# Cysteine-based fluorescence "turn-on" sensors for Cu<sup>2+</sup>and Ag<sup>+</sup>

V. Haridas,<sup>†</sup> P. P. Praveen Kumar,<sup>†</sup> and Cherumuttathu H. Suresh<sup>‡</sup>

<sup>†</sup> Department of Chemistry, Indian Institute of Technology Delhi, New Delhi -110016, India, and <sup>‡</sup>Computational Modeling and Simulation, National Institute for Interdisciplinary Science and Technology, (NIIST-CSIR) Thiruvananthapuram–695019, India.

| Description                                                                   | Page No.   |
|-------------------------------------------------------------------------------|------------|
| General experimental section                                                  | <b>S</b> 3 |
| Synthesis and data                                                            | S4         |
| Metal ion binding studies using UV-Visible spectroscopy                       | <b>S7</b>  |
| ESI-HRMS of complexes                                                         | <b>S8</b>  |
| Determination of stoichiometry                                                | S9         |
| Time-resolved fluorescence data of <b>3a</b> and <b>3b</b> with metal ions    | <b>S</b> 9 |
| ITC experiments                                                               | S12        |
| SEM and AFM analysis                                                          | S13        |
| DFT calculations                                                              | S14        |
| NMR titration experiments                                                     | S17        |
| <sup>1</sup> H NMR, <sup>13</sup> C NMR and ESI-MS of <b>3a</b> and <b>3b</b> | S20        |

#### **Experimental section**

# **General experimental:**

All reagents were used without further purification. All solvents employed in the reactions were distilled and dried from appropriate drying agents prior to use. Progress of reactions was monitored by silica gel thin layer chromatography (TLC). Purification of compounds was done by silica gel column chromatography. Silica gel G (Merck) was used for TLC and silica gels with 60-120 mesh used for column chromatography. Melting points were recorded on a Fisher-Scientific melting point apparatus and were uncorrected. IR spectra were recorded on a Nicolet, Protégé 460 spectrometer as KBr pellets. <sup>1</sup>H NMR spectra were recorded on Brucker-DPX-300 spectrometer using tetramethylsilane (<sup>1</sup>H) as an internal standard. Coupling constants are in Hz and the <sup>1</sup>H NMR data are reported as s (singlet), d (doublet), br (broad), t (triplet) and m (multiplet), dd (double doublet). High resolution mass spectra (HRMS) was recorded on AB Sciex, 1011273/A model using ESI-technniqe. UV-Visible spectra were recorded in Shimadzu double beam spectrophotometer, UV-2400. The emission spectra were recorded in HORIBA JOBIN YVON Scientific, fluoromax - 4 spectrofluorometer with slit width of 5 nm. Life-time measurements were conducted in IBH-Time correlated Single Photon Counting System with slit width 5 nm. The thermodynamic parameters were estimated by MicroCal iTC<sub>200</sub> system at 298K in acetonitrile. The nonlinear least square algorithm and the concentration of the sample solution was used to determine the best fit values of change in enthalpy ( $\Delta H$ ), change in entropy ( $\Delta S$ ) and binding constant (K).

#### **Preparation of 1**

To L-Cysteine (121 mg, 1 mmol), tertiary butanol (0.13 mL, 1.3 mmol) was added and mixed throughly. To this 2N HCl (0.40 mL, 0.013 mmol) was added and reaction mixture was refluxed for 12 h at 110°C. The reaction mixture was concentrated under reduced pressure and crystalline product was filtered off, washed with dry acetone.

%Yield: 84%

m.p: 200-202°C

<sup>1</sup>H NMR (D<sub>2</sub>O<sub>2</sub> 300 MHz) δ: 1.20 (s, 9H), 3.01 (br d, 2H), 3.92 (m, 1H)

<sup>13</sup>C NMR (D<sub>2</sub>O,75 MHz) δ: 26.4, 32.5, 42.1, 56.8, 172.3

IR (KBr): 3390, 2992 (br), 1742, 1625, 1571, 1520 (br), 1428, 1400, 1347, 1274, 1220, 1200 cm<sup>-1</sup>.

HRMS: Calculated for C<sub>7</sub>H<sub>15</sub>NO<sub>2</sub>SNa 200.0721, Obtained 200.0728.

# **Preparation of 2**

To an ice cooled solution of **1** (400 mg, 2.2 mmols) in 1:1 CH<sub>3</sub>CN/1N NaOH, pH=10, Boc anhydride (738 mg, 3.3 mmols) was added over a period of 1 h at regular interval of time. After stirring for 12 h, solvent was evaporated, diluted with water, and acidified with aq. KHSO<sub>4</sub> solution to pH=2. It was then extracted with ethtyl acetate, dried over Na<sub>2</sub>SO<sub>4</sub>, evaporated and recrystallized from acetone.

%Yield: 82%

m.p: 280-282°C

<sup>1</sup>H NMR (D<sub>2</sub>O<sub>2</sub> 300 MHz) δ: 1.11 (s, 18H), 2.93 (br dd, 2H), 3.85 (m, 1H) <sup>13</sup>C NMR (D<sub>2</sub>O<sub>2</sub>75 MHz) δ: 26.4, 29.3, 32.4, 42.1, 56.8, 80.1, 155.3, 172.3 IR (KBr): 3374, 1732, 1687, 1518, 1460, 1445, 1417, 1392, 1368, 1343, 1285 cm<sup>-1</sup>. HRMS : Calculated for  $C_{12}H_{23}NO_4SK$  316.0985, Obtained 316.0981.

#### **Preparation of 3a**

To an ice cooled solution of S-*tert*butyl Boc-Cysteine (200 mg, 0.72 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub>; was added N-hydroxysuccinimide (NHS) (99 mg, 0.86 mmol) and dicyclohexycarbodiimide (DCC) (177 mg, 0.86 mmol). After 5 minutes, 1-Pyrenemethylaminehydrochloride (230 mg, 0.86 mmol) and triethylamine (0.12 mL, 0.86 mmol) were added and the reaction mixture was stirred for 24 h. Reaction mixture was filtered and the filtrate was washed sequentially with 0.2N H<sub>2</sub>SO<sub>4</sub>, aq. NaHCO<sub>3</sub> solution and finally with water. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, evaporated and purified by column chromatography using ethyl acetate and hexane as eluents to yield 170 mg of the compound.

%Yield: 48%

m.p : 180-182°C

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ: 1.37 (s, 9H), 1.54 (s, 9H), 2.88 (br s, 2H), 4.82 (m, 2H), 5.23 (br m, 1H), 5.41 (d, *J* = 9.3 Hz, 1H), 7.82-8.10 (m, 9H)

<sup>13</sup>C NMR (CDCl<sub>3</sub>,75 MHz) δ : 28.1, 30.6, 30.7, 42.7, 47.3, 54.1, 80.1, 122.8, 123.3, 124.6, 125.0, 125.3, 125.9, 127.1, 127.4, 127.5, 128.1, 128.3, 129.1, 130.5, 130.7, 131.0, 131.3, 155.3, 170.3, IR (KBr) : 3325, 3039, 2926, 2851, 1689, 1628, 1575, 1532, 1440, 1367, 1312 cm<sup>-1</sup>.

HRMS : Calculated for C<sub>29</sub>H<sub>35</sub>N<sub>2</sub>O<sub>3</sub>S 491.2368, Obtained 491.2366.

### **Preparation of 3b**

To an ice cooled solution of S-*tert* butyl Boc-Cysteine (200 mg, 0.72 mmol) in dry  $CH_2Cl_2$ ; (NHS) (99 mg, 0.86 mmol); (DCC) (177 mg, 0.86 mmol) were added. After 5 minutes, L-tryptophanmethylesterhydrochloride (218 mg, 0.86 mmol) and triethylamine (0.12 mL, 0.86 mmol) were added and reaction was stirred for 24 h. Reaction mixture was filtered and the

 $CH_2Cl_2$  layer was washed sequentialy with 0.2N  $H_2SO_4$ , NaHCO<sub>3</sub> solution and finally with water. The filtrate was dried over Na<sub>2</sub>SO<sub>4</sub>, evaporated and purified by column chromatography using ethyl acetate and hexane as eluents to yield 170 mg of the compound.

%Yield: 50%

m.p : 220°C

<sup>1</sup>H NMR (CD<sub>3</sub>CN 300 MHz)  $\delta$ : 1. 28 (s, 9H), 1.40 (s, 9H), 2.81 (br dd+dd, 2H), 3.16 (d, J = 6.6

Hz, 2H), 3.63 (s, 3H), 4.15 (m, 1H), 4.72 (q, J = 6 Hz, 1H), 5.61 (m, 1H), 7.04-7.16 (m, 4H),

7.40 (d, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 9.27 (br s, 1H)

<sup>13</sup>C NMR (CD<sub>3</sub>CN,75 MHz) δ : 28.1, 28.5, 31.1, 31.3, 43.0, 52.8, 54.1, 55.5, 80.3, 110.3, 112.4,

119.3, 120.0, 122.6, 124.8, 128.4, 137.3, 156.3, 171.4, 172.8

IR (KBr) : 3330 (br), 2977, 2927, 1666 (br), 1517 (br), 1449, 1366, 1248, 1165, 1049 cm<sup>-1</sup>

HRMS : Calculated for C<sub>24</sub>H<sub>36</sub>N<sub>3</sub>O<sub>5</sub>S 478.2376, Obtained 478.2374.

#### Metal ion binding studies using UV-Visible spectroscopy

Stock solutions of compounds **3a** and **3b** with a concentration of 10<sup>-5</sup> M were made in acetonitrile. Stock solutions of metal perchlorates (10<sup>-4</sup> M) were made in acetonitrile. The metal ion were titrated against compounds **3a** and **3b**. The absorption spectra were recorded using Shimadzu double beam spectrophotometer, UV-2400. The titration was continued till a saturation point was observed.



**Figure S1**: (a) UV-Visible spectra for **3a** with and without metal ions in CH<sub>3</sub>CN. Cu<sup>2+</sup> ions 10 equiv and other metal ions 50 equiv (b) UV-Visible spectra for **3b** with and without metal ions in CH<sub>3</sub>CN. Ag<sup>+</sup> ions 10 equiv and other metal ions 50 equiv. (c) UV-visible spectra of **3a** alone and with the addition of Cu(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN. (d) UV-visible spectra of **3b** upon the addition of AgClO<sub>4</sub> in CH<sub>3</sub>CN.

# Metal ion binding studies using fluorescence spectroscopy

Stock solutions of compounds 3a and 3b with a concentration of  $10^{-5}$  M were made in acetonitrile. Stock solutions of metal perchlorates ( $10^{-4}$  M) were made in acetonitrile. The compounds were titrated against the metal ions and the emission spectra were recorded using

HORIBA JOBIN YVON Scientific, fluoromax - 4 spectrofluorometer with slit width of 5 nm.



The titration was continued till a saturation point was observed.

**Figure S2:** (a) Fluorescence spectral studies of **3a** with various metal ions in CH<sub>3</sub>CN, the results obtained are for 5 equiv of Cu<sup>2+</sup> and for 55 equiv of other metal ions,  $\lambda_{exc} = 340$  nm (b) Fluorescence spectral studies of **3b** in CH<sub>3</sub>CN, 50 equiv other metal ions and 3 equiv of Ag<sup>+</sup>,  $\lambda_{exc} = 290$  nm.

# ESI-HRMS showing the 2:1 complex of 3a with Cu<sup>2+</sup> and 1:2 complex of 3b with Ag<sup>+</sup>

Compound **3a** (500  $\mu$ M) and Cu(ClO<sub>4</sub>)<sub>2</sub> (500  $\mu$ M) solutions were made in CH<sub>3</sub>CN and 5 equivalents of Cu(ClO<sub>4</sub>)<sub>2</sub> solution was added to **3a** and the resulting solution was analyzed by ESI mass spectrometry. Compound **3b** (500  $\mu$ M) and AgClO<sub>4</sub> (500  $\mu$ M) solutions were made in CH<sub>3</sub>CN and 5 equivalents of AgClO<sub>4</sub> solution was added to **3b** and the resulting solution was analyzed by ESI mass spectrometry.



Figure S3: ESI-HRMS of (a) 3a-Cu(II) complex (b) 3b-Ag(I) complex.

#### **Determination of stoichiometry of complex**

A series of solutions containing compounds (**3a**, **3b**) (10<sup>-5</sup> M) and metal ions (10<sup>-5</sup> M) were prepared in CH<sub>3</sub>CN. The molefraction of the receptors were varied from 0.1 to 1 and the changes in absorbance after correction factor were plotted against the molefraction.



Figure S4: Job's plot of (a) 3a with  $Cu^{2+}$  (b) 3b with  $Ag^{+}$ 

#### **Ecxiation spectra**

Excitation spectra was recorded on a steady-state fluorescence spectrophotometer with a slitwidth of 5 nm. The redshift in emission intensity indicates the static type excimerr formation in 3a-Cu<sup>2+</sup>.



Figure S5: Excitation spectra for 3a with 5 equiv of  $Cu^{2+}$  in  $CH_3CN$ .

# Time-resolved fluorescence data for 3a and 3b with metal ions

Time-resolved fluorescence experiments were performed by using an IBH picosecond single photon-counting system employing an adjustable nano-LED excitation source and a Hamamatsu C4878-02 micro channel plate (MCP) detector with a slit width of 5 nm. Data were collected at room temperature with a 4 mm optical path fluorescence cell filled with the solutions of compounds in acetonitrile. The decay time was calculated by the linear least square fit method and single exponetial fit was observed for Trp excitation at 290 nm and double exponential fit for Pyrene excitation at 340 nm. Both compounds and metal ions were prepared in CH<sub>3</sub>CN with a



**Figure S6:** Time-resolved fluorescence spectra of (a) **3a** upon adding various equivalents of  $Cu^{2+}$ ,  $\lambda_{exc} = 340$  nm, collection at 470 nm (b) **3b** with various equivalents of Ag<sup>+</sup>,  $\lambda_{exc} = 290$  nm, collection at 330 nm.

 Table S1: Parameters calculated from time-resolved fluorescence spectra of 3a alone and 3a

 with Cu<sup>2+</sup>.

| Compounds                  | $\lambda_{exc}$ | $\lambda_{collection}$ | $\tau_1(ns)$ | τ <sub>2</sub> (ns) | A <sub>1</sub> | A <sub>2</sub> | $\chi^2$ |
|----------------------------|-----------------|------------------------|--------------|---------------------|----------------|----------------|----------|
|                            |                 |                        |              |                     |                |                |          |
| 3a                         | 340 nm          | 470 nm                 | 3.11         | 14.09               | 6.92           | 93.08          | 1.01     |
| <b>3a</b> +1 equiv Cu(II)  | 340 nm          | 470 nm                 | 3.14         | 14.01               | 17.71          | 82.29          | 1.06     |
| <b>3a</b> + 2 equiv Cu(II) | 340 nm          | 470 nm                 | 3.10         | 14.01               | 13.23          | 86.77          | 1.03     |
| <b>3a</b> + 3 equiv Cu(II) | 340 nm          | 470 nm                 | 3.15         | 14.03               | 12.92          | 87.08          | 1.11     |

 Table S2: Parameters calculated from time- resolved fluorescence spectra of 3b alone and 3b

 with Ag<sup>+</sup>.

| Compound                  | λ <sub>exc</sub> | $\lambda_{collection}$ | τ    | A <sub>1</sub> |
|---------------------------|------------------|------------------------|------|----------------|
| 3b                        | 290 nm           | 330 nm                 | 1.01 | 100            |
| <b>3b</b> +1 equiv Ag(I)  | 290 nm           | 330 nm                 | 0.99 | 100            |
| <b>3b</b> + 2 equiv Ag(I) | 290 nm           | 330 nm                 | 1.0  | 100            |
| <b>3b</b> + 3equiv Ag(I)  | 290 nm           | 330 nm                 | 1.01 | 100            |

# Competitive metal ion binding by fluorescence spectroscopy

An equimolar solutions of 3a and 3b (10<sup>-5</sup> M) and metal ions (10<sup>-4</sup> M) were prepared in CH<sub>3</sub>CN. The emission intensities of the molecules (3a and 3b) with (I) and without (I<sub>0</sub>) metal ions were recorded with steady-state fluorescence. The response towards metal ion obtained by plotting the change in emission intensity (I-I<sub>0</sub>) against the metal ions



**Figure S7:** Competitive binding studies of (a) **3a** (b) **3b** towards various metal ions. The binding was studied by steady-state fluorescence spectroscopic analysis.

#### **Determination of binding constant**

The binding constant (K<sub>21</sub>) for 2:1 binding of compound **3a** with Cu<sup>2+</sup> was determined by equation 1.

$$2H+G \Longrightarrow GH_2$$

$$[G]_{tot} = \frac{a}{2K_{21}(1-a)^2[H]_{tot}} + \frac{a[H]_{tot}}{2}$$
(1)

[H<sub>tot</sub>] and [G<sub>tot</sub>] denote the total concentrations of **3a** and Cu<sup>2+</sup>, and the term *a* is the ratio of change in absorbance ratio ie.  $(A - A_0)/(A_i - A_0)$ , where *A* is the absorbance at added metal ion, and  $A_0$  and  $A_i$  are the intensity at zero and infinite cation concentrations.

The association constant of **3b** with Ag<sup>+</sup> was determined UV-Visible spectroscopically by employing Benesi-Hildebrand method.

$$1/A_0-A = 1/(A_0-A_\infty)K[G]^2 + 1/(A_0-A_\infty)$$

Where A and  $A_0$  are the absorbance intensities of **3b** with and without  $Ag^+$  and  $A_{\infty}$  is the absorbance intensity for infinite dilution of **3b** with  $Ag^+$ .



Figure S8: Benesi-Hildebrand plot for 3b with Ag<sup>+</sup>.

# ITC experiments on complexation

The thermodynamic parameters were determined by using MicroCal iTC<sub>200</sub> system at 298K in acetonitrile. Sample solution (**3a**) of 200  $\mu$ M was taken in the cell and 30  $\mu$ M of Cu(ClO<sub>4</sub>)<sub>2</sub> was slowly added. Roughly 4equiv of titrant was added to sample solution. The nonlinear least square algorithm was used to determine the best fit values for change in enthalpy ( $\Delta$ H) and binding constant (K). Similarly, sample solution (**3b**) of 150  $\mu$ M was taken in the cell and 50  $\mu$ M of AgClO<sub>4</sub> was slowly added.

| Binding between                | K (M <sup>-1</sup> ) | ∆G1<br>(KJ/mol) | ∆H₁<br>(KJ/mol) | T∆S₁<br>(KJ/mol) |
|--------------------------------|----------------------|-----------------|-----------------|------------------|
| <b>3a</b> and Cu <sup>2+</sup> | 1.95x10 <sup>5</sup> | -30.18          | -19.13          | 11.05            |

Table S3. ITC studies on the complexation of 3a and 3b toward  $Cu^{+2}$  and  $Ag^+$ .

| Binding between               | K <sub>1</sub> (M <sup>-1</sup> ) and<br>K <sub>2</sub> (M <sup>-1</sup> ) | ΔG <sub>1</sub><br>(KJ/mol)<br>and ΔG <sub>2</sub><br>(KJ/mol) | ΔH <sub>1</sub><br>(KJ/mol)<br>and ΔH <sub>2</sub><br>(KJ/mol) | TΔS <sub>1</sub><br>(KJ/mol)<br>and TΔS <sub>1</sub><br>(KJ/mol) |
|-------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|
| <b>3b</b> and Ag <sup>+</sup> | 1.95x10 <sup>5</sup> ;                                                     | -30.18;                                                        | -19.13;                                                        | 11.05;                                                           |
|                               | 1.97x10 <sup>8</sup>                                                       | -47.32                                                         | -70.53                                                         | -23.21                                                           |

#### SEM and AFM analysis of 3a and 3b

The compounds **3a** and **3b** were dissolved in  $CH_3CN$  in order to get a 1 mM solution. The metal salts  $Cu (ClO_4)_2$  and  $AgClO_4$  were prepared in  $CH_3CN$  and mix with **3a** and **3b** respectively such that 3 equiv of metal ions were present in the solution. All the sample solutions were drop-casted

on a carbon tape, pasted on a stub, dried at room temperature and coated with  $\sim 10$  nm of gold. Images were recorded by ZEISS EVO<sup>®</sup>18 instrument with an EHT of 20 kv.

Similar solutions were drop-casted on silicone wafer and samples were recorded using Nanoscope Multimode AFM operating at tapping mode in air. The images were taken in the air at room temperature and data analysis were performed using Nanoscope 5.31r1 software.



Figure S9: AFM images of (a) 3a (b) 3a+Cu<sup>2+</sup> (c) 3b (d) 3b+Ag<sup>+</sup>.

# **Density functional theory (DFT) calculation**

The DFT calculations were done using the Guassian 09 suite of programs.<sup>1</sup> The binding modes of **3a** with Cu<sup>2+</sup> and **3b** with Ag<sup>+</sup> was investigated by (unrestricted) UB3LYP/6-31G(d) level of density functional theory (DFT) and B3LYP/Gen1 level of DFT, respectively , where Gen1 corresponds to 6-31G(d) basis set for H, C, N, O and S atoms and LanL2DZ basis set with 'f polarization function for Ag atom.

The NMR calculations were performed by GIAO method from the coordinates of the optimised structures of the uncomplexed and complexed systems.



Figure S10. Possible binding modes of  $Cu^{2+}$  with **3a**. Initial structures resembling to these configurations are subjected to DFT level optimization.



Figure S11. Final Optimized structures of  $Cu^{2+}$  complex of **3a** obtained by DFT calculation. The relative energy ( $E_{rel}$ ) in kcal/mol is also shown below each structure. UB3LYP/6-31G\* level theory was used for the computation.







**Figure S12**. The optimized structures of eight different possible binding modes (1-8) in the decreasing order of stability for 3b-Ag<sup>+</sup> complex. The level of theory used is B3LYP/Gen1. Gen1 corresponds to 6-31G(d) basis set for H, C, N, O and S atoms and LanL2DZ basis set with 'f polarization function for Ag atom.

**Table S4.** The relative order of stability in kcal/mol for **1-8** complexes. For the structures of **1-8**, please see Figure S12

| Complex | Relative. Energy (kcal/mol) |
|---------|-----------------------------|
| 1       | 0.0                         |
| 2       | 8.8                         |
| 3       | 9.3                         |
| 4       | 13.9                        |
| 5       | 14.3                        |
| 6       | 14.8                        |
| 7       | 16.1                        |
| 8       | 33.9                        |

# **NMR Titraton Experiments**

The involvement of indole moiety in metal ion binding was confirmed by <sup>13</sup>C NMR in CD<sub>3</sub>CN. A solution of **3b** (600  $\mu$ M) in CD<sub>3</sub>CN was prepared and <sup>13</sup>C NMR was recorded. **3b** was added to a solution of AgClO<sub>4</sub> in CD<sub>3</sub>CN (600  $\mu$ M) and <sup>13</sup>C NMR was recorded. Similar solutions were used for <sup>1</sup>H NMR titrations also.



**Figure S13:** <sup>1</sup>H NMR (300 MHz,  $CD_3CN$ ) spectra of **3b** alone and with the addition of AgClO<sub>4</sub> (0-10 euiv). The lower NMR trace represents **3b** alone and the the remaining spectra from down to up represent the increasing amounts of AgClO<sub>4</sub>.

**Table S5**. Theoretically calculated <sup>13</sup>C NMR chemicalshifts for **3b** and **3b**+Ag<sup>+</sup>. The highlight indicates the shift ( $\Delta\delta$ ) expected for **3b** . 2Ag<sup>+</sup> complex. The experimental spectral data are given for comparison. The convergence of experimental and theoretical values are clear from the table.



| System         | Experimental <sup>13</sup> C NMR |                     | Calculated <sup>13</sup> C NMR values |                     |                     |                   |
|----------------|----------------------------------|---------------------|---------------------------------------|---------------------|---------------------|-------------------|
|                | values (ppm)                     |                     | by DFT (ppm)                          |                     |                     |                   |
| C-atoms        | 3b                               | 3b+Ag <sup>+</sup>  | Δδ                                    | 3b                  | 3b+A+               | Δδ                |
| a              | <mark>31.13</mark>               | <mark>31.44</mark>  | <mark>0.31</mark>                     | <mark>30.81</mark>  | <mark>31.11</mark>  | <mark>0.29</mark> |
| <mark>b</mark> | <mark>42.98</mark>               | <mark>43.80</mark>  | <mark>0.82</mark>                     | <mark>36.34</mark>  | <mark>37.12</mark>  | <mark>0.77</mark> |
| <mark>c</mark> | <mark>31.31</mark>               | <mark>31.48</mark>  | <mark>0.17</mark>                     | <mark>30.71</mark>  | <mark>30.81</mark>  | <mark>0.10</mark> |
| d              | 55.52                            | 55.52               | 0.0                                   | 53.34               | 53.34               | 0.0               |
| e              | <mark>156.28</mark>              | <mark>156.83</mark> | 0.55                                  | <mark>158.23</mark> | <mark>158.81</mark> | <mark>0.57</mark> |
| f              | 80.31                            | 80.31               | 0.0                                   | 60.88               | 60.91               | 0.02              |
| g              | 28.48                            | 28.49               | 0.01                                  | 27.49               | 27.49               | 0.0               |
| h              | 171.41                           | 171.41              | 0.0                                   | 172.04              | 172.05              | 0.01              |
| i              | 54.09                            | 54.09               | 0.0                                   | 56.92               | 56.93               | 0.01              |
| j              | <mark>172.84</mark>              | <mark>173.42</mark> | <mark>0.58</mark>                     | <mark>172.98</mark> | <mark>173.62</mark> | <mark>0.63</mark> |
| k              | 52.75                            | 52.75               | 0.0                                   | 56.92               | 56.93               | 0.01              |
| 1              | 28.10                            | 28.11               | 0.01                                  | 28.99               | 28.99               | 0.0               |
| m              | 110.30                           | 110.30              | 0.0                                   | 107.53              | 107.53              | 0.0               |
| n              | 124.75                           | 124.75              | 0.0                                   | 127.28              | 127.31              | 0.02              |
| 0              | 137.34                           | 137.34              | 0.0                                   | 140.07              | 140.08              | 0.01              |
| p              | <mark>112.38</mark>              | <mark>112.85</mark> | <mark>0.47</mark>                     | <mark>113.62</mark> | <mark>114.01</mark> | <mark>0.38</mark> |
| q              | <mark>119.26</mark>              | <mark>119.47</mark> | 0.21                                  | <mark>117.69</mark> | <mark>117.91</mark> | <mark>0.21</mark> |
| r              | 120.04                           | 120.04              | 0.0                                   | 124.32              | 124.33              | 0.01              |
| S              | 122.56                           | 122.56              | 0.0                                   | 119.90              | 119.91              | 0.01              |
| t              | 128.44                           | 128.44              | 0.0                                   | 127.25              | 127.26              | 0.01              |

# **Reference.**

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01, 2010.



<sup>1</sup>H NMR spectrum of 1 in D<sub>2</sub>O (300MHz)



 $^{13}$ C NMR spectrum of **1** in D<sub>2</sub>O (75MHz)



ESI-Mass spectrum of 1



<sup>1</sup>H NMR spectrum of  $\mathbf{2}$  in D<sub>2</sub>O (300MHz)



<sup>13</sup>C NMR spectrum of **2** in D<sub>2</sub>O (75MHz)



ESI-Mass spectrum of 2



<sup>1</sup>H NMR spectrum of **3a** in CDCl<sub>3</sub> (300MHz)



<sup>13</sup>C NMR spectrum of **3a** in CDCl<sub>3</sub> (75MHz)



ESI-Mass spectrum of 3a



<sup>1</sup>H NMR spectrum of **3b** in CD<sub>3</sub>CN (300MHz)



DEPT-135 NMR spectrum of **3b** in CD<sub>3</sub>CN (75MHz)



ESI-Mass spectrum of 3b