## **Supplementary Information for**

## Synthesis of porous MgAl<sub>2</sub>O<sub>4</sub> spinel and its superior performance for organic dye adsorption

Junying Tian, Peng Tian, Guiling Ning,\* Hongchang Pang, Qiang Song, Hang Cheng and Haixia Fang State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology, Dalian 116023, China E-mail: <u>ninggl@dlut.edu.cn</u>

## **CAPTIONS:**

| Fig. S1 Powder XRD pattern of MCH template and reference $Mg_5(OH)_2(CO_3)_4$ ·4H <sub>2</sub> O (JCPDS |
|---------------------------------------------------------------------------------------------------------|
| Card No. 25-0513)                                                                                       |
| Fig. S2 Calibration curves for relationship between absorbance and concentration in different           |
| concentration ranges: (a) $0\sim10$ mg L <sup>-1</sup> and (b) $10\sim100$ mg L <sup>-1</sup> S3        |
| Fig. S3 EDX pattern of as-prepared MAS sample                                                           |
| <b>Fig. S4</b> N <sub>2</sub> ad/desorption isotherms of samples calcined at 800, 900 and 1000°CS5      |
| Fig. S5 (a) Powder XRD pattern, (b) SEM image and (c) $N_2$ ad/desorption isotherms of the              |
| bulk MAS                                                                                                |
| Fig. S6 Powder XRD patterns of the MAS powder before adsorption, after adsorption and                   |
| reference MAS (JCPDS Card No. 77-1203)                                                                  |
| Fig. S7 Powder XRD patterns of MAS, 2-MAS, 3-MAS and reference MAS                                      |
| Fig. S8 N <sub>2</sub> ad/desorption isotherms of 2-MAS and 3-MAS samples                               |
| <b>Table. S1</b> Detail information of the CR used in the experiment                                    |
| <b>Table. S2</b> Kinetics parameters for the adsorption of Congo red on MAS powder                      |
| Table. S3 Isotherm parameters for the adsorption of Congo red on MAS powder                             |



**Fig. S1** Powder XRD pattern of MCH template and reference Mg<sub>5</sub>(OH)<sub>2</sub>(CO<sub>3</sub>)<sub>4</sub>·4H<sub>2</sub>O (JCPDS Card No. 25-0513)



**Fig. S2** Calibration curves for relationship between absorbance and concentration in different concentration ranges: (a) 0~10mg L<sup>-1</sup> and (b) 10~100mg L<sup>-1</sup>



Fig. S3 EDX pattern of as-prepared MAS sample



Fig. S4  $N_2$  ad/desorption isotherms of samples calcined at 800, 900 and 1000°C.



Fig.S5 (a) Powder XRD pattern, (b) SEM image and (c) N<sub>2</sub> ad/desorption isotherms of the bulk MAS



Fig.S6 Powder XRD patterns of the MAS powder before adsorption, after adsorption and reference MAS (JCPDS Card No. 77-1203)



**Fig. S7** Powder XRD patterns of MAS, 2-MAS, 3-MAS and reference MAS (JCPDS Card No. 77-1203).



Fig. S8  $N_2$  ad/desorption isotherms of 2-MAS and 3-MAS samples

| Molecular Formula  | $C_{32}H_{22}N_6Na_2O_6S_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structural Formula | $ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ |
| Molar Mass         | 696.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CAS Number         | 573-58-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Table S1 Detail information of the CR used in the experiment

|                                         |                                         | Pseudo-first-order model                |                                            |                | Pseude                                  | o-second-order n                                          | nodel          | Intraparticle diffusion model                   |                            |                |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|----------------|-----------------------------------------|-----------------------------------------------------------|----------------|-------------------------------------------------|----------------------------|----------------|
| C <sub>0</sub><br>(mg L <sup>-1</sup> ) | $q_{ m e,exp}$<br>(mg g <sup>-1</sup> ) | $q_{ m e,cal}$<br>(mg g <sup>-1</sup> ) | <i>k</i> <sub>1</sub> (min <sup>-1</sup> ) | R <sup>2</sup> | $q_{ m e,cal}$<br>(mg g <sup>-1</sup> ) | k <sub>2</sub><br>(g mg <sup>-1</sup> min <sup>-1</sup> ) | R <sup>2</sup> | $k_3$ (mg g <sup>-1</sup> min <sup>-1/2</sup> ) | C<br>(mg g <sup>-1</sup> ) | R <sup>2</sup> |
| 200                                     | 396.7                                   | 385.1                                   | 0.4496                                     | 0.6380         | 398.4                                   | 0.002582                                                  | 0.9999         | 3.419                                           | 358.7                      | 0.6443         |
| 300                                     | 595.7                                   | 576.3                                   | 0.5016                                     | 0.4218         | 598.8                                   | 0.00167                                                   | 0.9999         | 4.989                                           | 539.4                      | 0.7659         |
| 400                                     | 794.5                                   | 728.6                                   | 0.3075                                     | 0.4121         | 806.5                                   | 0.000409                                                  | 0.9998         | 15.67                                           | 608.8                      | 0.8371         |

Table S2 Kinetics parameters for the adsorption of Congo red on MAS powder

| La                                    |       | Fr             | Freundlich |    |                | Sips                                 |                |        |                |
|---------------------------------------|-------|----------------|------------|----|----------------|--------------------------------------|----------------|--------|----------------|
| $q_{\rm m,}$<br>(mg g <sup>-1</sup> ) | b     | R <sup>2</sup> | $K_{f}$    | n  | R <sup>2</sup> | $q_{ m m,}$<br>(mg g <sup>-1</sup> ) | K <sub>s</sub> | γ      | R <sup>2</sup> |
| 863.6                                 | 998.4 | 0.6995         | 565.2      | 11 | 0.4958         | 845.5                                | 589.1          | 0.6119 | 0.9738         |

 Table S3 Isotherm parameters for the adsorption of Congo red on MAS powder