Deep-blue emitting pyrene-benzimidazole conjugates for solution processed

organic light-emitting diodes

Durai Karthik,^a K. R. Justin Thomas,*,^a Jwo-Huei Jou,^b Sudhir Kumar,^b Yu-Lin Chen^b and

Yung-Cheng Jou^b

^aOrganic Materials Chemistry, Department of Chemistry, Indian Institute of Technology

Roorkee, Roorkee – 247 667, India.

^bDepartment of Material Science and Engineering, National Tsing Hua University, Hsinchu

30013, Taiwan.

*Corresponding author. krjt8fcy@iitr.ac.in

Electronic Supplementary Information

D ! 01		~^
Fig. SI	Absorption spectra of 3a recorded in different solvents.	S 2
Fig. S2	Absorption spectra of 3b recorded in different solvents.	S2
Fig. S3	Absorption spectra of 3c recorded in different solvents.	S 3
Fig. S4	Absorption spectra of 3d recorded in different solvents.	S 3
Fig. S5	Emission spectra of 3a recorded in different solvents.	S4
Fig. S6	Emission spectra of 3b recorded in different solvents.	S4
Fig. S7	Emission spectra of 3c recorded in different solvents.	S 5
Fig. S8	Emission spectra of 3d recorded in different solvents.	S5
Fig. S9	Differential pulse voltammetry spectra of all dyes recorded in DCM.	S6
Table S1	Solvatochromic data for the dyes.	S 7
Table S2	Dipole moment data for the dyes.	S 7
Fig. S10	Correlation plot of v with Δf for the dyes 3a-3e .	S 8
Table S3	Cartesian coordinates for the optimized structure 3a .	S 9
Table S4	Cartesian coordinates for the optimized structure 3b .	S11
Table S5	Cartesian coordinates for the optimized structure 3c .	S13
Table S6	Cartesian coordinates for the optimized structure 3d .	S15
Table S7	Cartesian coordinates for the optimized structure 3e .	S17
Fig. S11	Frontier molecular orbitals of the selected compounds 3a & 3b .	S19
Fig. S12	Frontier molecular orbitals of the selected compounds $3c - 3e$.	S19
Fig. S13	¹ H NMR spectrum of 3a in CDCl ₃ .	S20
Fig. S14	13 C NMR spectrum of 3a in CDCl ₃ .	S20
Fig. S15	¹ H NMR spectrum of 3b in CDCl ₃ .	S21
Fig. S16	¹³ C NMR spectrum of 3b in CDCl ₃ .	S21
Fig. S17	¹ H NMR spectrum of $3c$ in CDCl ₃ .	S22
Fig. S18	13 C NMR spectrum of 3c in CDCl ₃ .	S22
Fig. S19	¹ H NMR spectrum of 3d in CDCl ₃ .	S23
Fig. S20	13 C NMR spectrum of 3d in CDCl ₃ .	S23
Fig. S21	¹ H NMR spectrum of 3e in CDCl ₃ .	S24
Fig. S22	¹³ C NMR spectrum of 3e in CDCl ₃ .	S24

Fig. S1 Absorption spectra of 3a recorded in different solvents.

Fig. S2 Absorption spectra of 3b recorded in different solvents.

Fig. S3 Absorption spectra of 3c recorded in different solvents.

Fig. S4 Absorption spectra of 3d recorded in different solvents.

Fig. S5 Emission spectra of 3a recorded in different solvents.

Fig. S6 Emission spectra of 3b recorded in different solvents.

Fig. S7 Emission spectra of 3c recorded in different solvents.

Fig. S8 Emission spectra of 3d recorded in different solvents.

Fig. S9 Differential pulse voltammetry spectra of all dyes recorded in DCM.

Table S1 Solva	ochromic o	lata for t	he dyes.
----------------	------------	------------	----------

Duo		λ_{ab}	_s (nm)			λ_{em}	(nm)		5	Stokes s	hift (cm	n ⁻¹)		FWH	M (nm)	
Dye	THF	DMF	ACN	MeOH	THF	DMF	ACN	МеОН	THF	DMF	ACN	MeOH	THF	DMF	ACN	MeOH
3a	278,	279,	277,	277,	405,	408,	405,	404,	4378	4452	4548	4487	57	58	58	58
	344	346	342	342	424	427	421	417								
3 b	279,	280,	278,	277,	423	433	429	437	5178	5641	5844	6356	61	65	66	69
	300,	348	344	342												
	347															
3c	272,	279,	277,	276,	455	458	457	460	4904	4833	5218	5361	64	65	64	65
	328,	330,	326,	327,												
	372	375	369	366												
3d	274,	278,	274,	274,	458	469	471	460	4482	5063	5294	4786	53	63	63	60
	302,	303,	301,	300,												
	380	379	377	377												
3e	274,	275,	273,	272,	464	483	483	463	4764	5681	5751	4857	55	66	67	62
	330,	330,	328,	328,												
	380	379	378	377												

Table S2 Dipole moment data for the dyes.

		<i>a j c c c c c c c c c c</i>
Onsager radius ^a	$\mu_{ m g}{}^{ m a}$	μ_{e}^{b}
5.69	3.54	_c
6.08	3.60	7.52
6.34	4.39	_c
6.28	3.62	10.84
6.24	3.66	12.00
	Onsager radius ^a 5.69 6.08 6.34 6.28 6.24	Onsager radius ^a μ_g^a 5.69 3.54 6.08 3.60 6.34 4.39 6.28 3.62 6.24 3.66

^a Calculated (B3LYP/6-31G). ^b Calculated following procedure in ref. 1.

^c could not me calculated due to no significant variation in emission energy with solvent polarity.

Fig. S10 Correlation plot of v with Δf for the dyes 3a-3e.

1. G. F. Mes, B. De Jong, H. J. Van Ramesdonk, J. W. Verhoeven, J. M. Warman, M. P. De Haas and L. E. W. Horsman-Van den Dool, *J. Am. Chem. Soc.*, 1984, **106**, 6524.

 Table S3 Cartesian coordinates for the optimized structure 3a.

Energy: -1225.52658127 hartrees

Atom	Х	Y	Z
С	-6.11014	-1.36623	0.99295
С	-6.08833	-0.15013	0.31293
С	-4.88117	0.38602	-0.16325
С	-3.6647	-0.33136	0.05679
С	-3.69878	-1.57508	0.75532
С	-4.92987	-2.07253	1.21293
С	-4.82784	1.63683	-0.86706
С	-2.42221	0.19308	-0.41647
С	-2.40964	1.4428	-1.10871
С	-3.64698	2.14039	-1.3184
С	-1.1847	1.95082	-1.5655
Н	-1.1669	2.89391	-2.10445
С	-0.00306	1.25995	-1.3431
С	0.01672	0.03097	-0.664
С	-1.20385	-0.52763	-0.1963
С	-1.27592	-1.77703	0.51474
С	-2.46227	-2.27056	0.96491
Н	-2.48749	-3.21775	1.49736
Н	-0.36167	-2.33656	0.6623
Н	-5.75636	2.17663	-1.03306
Н	-7.05345	-1.76565	1.35358
Н	-7.01181	0.39709	0.14378
Н	-4.95144	-3.02045	1.74376
Н	-3.61882	3.08779	-1.84998
Н	0.92781	1.67083	-1.71779
С	1.307	-0.66305	-0.48752
Ν	1.51254	-1.94143	-0.72574
Ν	2.483	0.00533	-0.11491
С	2.86029	-2.15671	-0.50743
С	3.49429	-0.95401	-0.12357
С	2.63847	1.34085	0.3646
С	3.60437	-3.33948	-0.61019
С	4.85415	-0.89325	0.18914
С	3.56488	2.19022	-0.25031
С	1.89022	1.79047	1.4575
Η	3.12007	-4.26332	-0.90896
С	4.9613	-3.28492	-0.31337
С	5.57518	-2.08004	0.0842
Н	5.32841	0.0308	0.5015
Н	4.13237	1.83246	-1.10329
С	3.74115	3.48751	0.2315
С	2.0616	3.09345	1.92194

Н	1.18145	1.12067	1.93204
Н	5.56276	-4.18618	-0.38425
Н	6.6362	-2.07575	0.31529
Н	4.46167	4.14362	-0.24742
С	2.98819	3.94335	1.31456
Н	1.47546	3.44106	2.76715
Н	3.12281	4.95528	1.68405

 Table S4 Cartesian coordinates for the optimized structure 3b.

Energy: -1456.59000724 hartrees

Atom	Х	Y	Ζ
С	7.97391	-2.13163	0.5557
С	8.18004	-0.79369	0.22518
С	7.09427	0.0699	0.00905
С	5.76415	-0.44057	0.12684
С	5.56517	-1.81145	0.47113
С	6.68187	-2.63703	0.68002
С	7.27558	1.4552	-0.32522
С	4.64155	0.41595	-0.09429
С	4.86187	1.79054	-0.41426
С	6.209	2.27632	-0.5239
С	3.75137	2.62438	-0.60857
Н	3.90898	3.67227	-0.84939
С	2.46079	2.12084	-0.51381
С	2.20982	0.7701	-0.22609
С	3.30845	-0.09839	0.00966
С	3.14836	-1.47677	0.39361
С	4.21959	-2.28931	0.60824
Н	4.06658	-3.32452	0.9018
Н	2.14624	-1.86601	0.52795
Н	8.28921	1.83715	-0.4131
Н	8.82654	-2.78394	0.72
Н	9.19033	-0.40425	0.13266
Н	6.52591	-3.67977	0.943
Н	6.35885	3.32386	-0.77156
Н	1.61586	2.77816	-0.69589
С	0.79463	0.31223	-0.18663
С	-0.14715	0.9925	0.60211
С	0.33889	-0.7672	-0.96528
С	-1.48731	0.6167	0.61755
Н	0.18319	1.81364	1.23121
Н	1.03898	-1.29808	-1.60283
С	-0.99755	-1.14657	-0.95443
Η	-2.17588	1.14808	1.26382
С	-1.93666	-0.45656	-0.16806
Η	-1.33929	-1.98179	-1.55543
С	-3.32677	-0.93896	-0.1701
Ν	-3.63861	-2.19914	-0.39123
Ν	-4.45193	-0.14798	0.0934
С	-5.01275	-2.2747	-0.2796
С	-5.55076	-1.00372	0.02418
С	-4.55124	1.27296	0.19969
С	-5.86509	-3.37761	-0.42526

С	-6.92225	-0.78527	0.16734
С	-5.08728	1.8416	1.35994
С	-4.14634	2.08878	-0.86185
Н	-5.45575	-4.35592	-0.65467
С	-7.23147	-3.17151	-0.27346
С	-7.75175	-1.89369	0.01535
Н	-7.3254	0.19816	0.38443
Н	-5.39148	1.19635	2.1777
С	-5.21433	3.22781	1.45609
С	-4.26372	3.47345	-0.7516
Н	-3.74334	1.63429	-1.76049
Н	-7.9153	-4.00802	-0.38163
Н	-8.82524	-1.76915	0.12158
Н	-5.63085	3.66688	2.35753
С	-4.79946	4.04583	0.40405
Н	-3.94454	4.10512	-1.57497
Н	-4.89442	5.12444	0.48328

 Table S5 Cartesian coordinates for the optimized structure 3c.

Energy: -1777.34475091 hartrees

Atom	Х	Y	Ζ
С	-7.8181	1.64958	-1.35795
С	-8.03797	0.54202	-0.54138
С	-6.96121	-0.18046	-0.00261
С	-5.62576	0.23718	-0.29585
С	-5.41295	1.36899	-1.1389
С	-6.52093	2.05906	-1.65737
С	-7.15762	-1.33164	0.83335
С	-4.51208	-0.47548	0.24751
С	-4.74824	-1.62206	1.06597
С	-6.09954	-2.02183	1.33937
С	-3.64672	-2.32325	1.57863
Н	-3.81548	-3.20021	2.19748
С	-2.35199	-1.89582	1.32615
С	-2.08442	-0.75486	0.54843
С	-3.17415	-0.04583	-0.03087
С	-3.00011	1.07158	-0.91982
С	-4.06271	1.74417	-1.4424
Н	-3.89822	2.57944	-2.11809
Н	-1.99374	1.36529	-1.19125
Н	-8.17519	-1.64482	1.05105
Н	-8.66394	2.19478	-1.76631
Н	-9.05218	0.22435	-0.31487
Н	-6.35405	2.91925	-2.30007
Н	-6.25995	-2.89491	1.9662
Η	-1.5184	-2.43334	1.76693
С	-0.68595	-0.32932	0.37749
С	-0.13302	0.92756	0.51258
S	0.5607	-1.50712	0.02294
С	1.27449	0.95499	0.34429
Η	-0.71899	1.80346	0.76441
С	1.81528	-0.28693	0.07841
Н	1.86041	1.86029	0.42171
С	3.17477	-0.72281	-0.17924
Ν	3.45833	-1.95538	-0.55569
Ν	4.3141	0.08101	-0.08091
С	4.82667	-1.99501	-0.71882
С	5.39055	-0.73051	-0.42926
С	4.43349	1.43816	0.35375
С	5.6581	-3.0552	-1.10569
С	6.76157	-0.48242	-0.5038
С	4.61946	2.45315	-0.58945
С	4.39499	1.73907	1.71883

Н	5.23265	-4.02759	-1.33053
С	7.02545	-2.81644	-1.18653
С	7.56904	-1.55015	-0.88926
Н	7.1789	0.49223	-0.27341
Н	4.64937	2.19954	-1.64416
С	4.75524	3.77488	-0.16334
С	4.52419	3.06322	2.13687
Н	4.2593	0.93659	2.43641
Н	7.69242	-3.62011	-1.48373
Н	8.6424	-1.4028	-0.96188
Н	4.89749	4.564	-0.89529
С	4.70406	4.08136	1.19785
Н	4.48925	3.29837	3.19618
Н	4.80656	5.11101	1.52675

 Table S6 Cartesian coordinates for the optimized structure 3d.

Energy: -1742.98956942 hartrees

Atom	Х	Y	Z
Ν	1.16242	0.71439	0.00039
С	1.16764	2.11677	0.23528
С	2.25927	-0.0794	0.46223
С	1.84829	2.65164	1.34009
С	0.5235	2.99441	-0.65428
С	3.54875	0.06251	-0.10531
С	2.04358	-1.01193	1.48496
С	1.88496	4.03007	1.54456
Н	2.34815	1.98565	2.03469
С	0.55115	4.36815	-0.42905
Н	-0.00129	2.59654	-1.51587
С	4.61848	-0.73574	0.41026
С	3.82675	0.96338	-1.19039
С	3.07905	-1.79797	1.97336
Н	1.04471	-1.10442	1.89922
С	1.23462	4.89807	0.6675
Н	2.41854	4.42336	2.40522
Н	0.04196	5.02829	-1.12525
С	5.93182	-0.60942	-0.13729
С	4.38014	-1.6739	1.46095
С	5.07957	1.07816	-1.71074
Н	3.0136	1.5549	-1.59313
Н	2.88835	-2.50789	2.77358
Н	1.25913	5.97034	0.83461
С	6.17924	0.30724	-1.20342
С	7.00365	-1.40337	0.37619
С	5.47624	-2.4583	1.95605
Н	5.26652	1.76309	-2.53353
С	7.47843	0.41693	-1.72496
С	8.28617	-1.25817	-0.17704
С	6.72961	-2.32773	1.4413
Н	5.28148	-3.16449	2.75885
С	8.51826	-0.35717	-1.21437
Н	7.66484	1.11527	-2.53635
Н	9.10116	-1.86151	0.21369
Н	7.5491	-2.92748	1.82816
Н	9.5171	-0.25923	-1.62939
С	0.00962	0.04383	-0.48425
С	0.15986	-1.10387	-1.28321
С	-1.28251	0.48572	-0.17104
С	-0.96197	-1.77576	-1.75843
Н	1.1551	-1.45503	-1.53276

С	-2.4123	-0.18849	-0.65745
Н	-1.42992	1.36578	0.44234
С	-2.24811	-1.32808	-1.46076
Н	-0.83089	-2.65077	-2.38822
Н	-3.1076	-1.84562	-1.8684
С	-3.73236	0.37835	-0.32748
Ν	-3.92866	1.66888	-0.1592
Ν	-4.91235	-0.3643	-0.1964
С	-5.27758	1.81649	0.09791
С	-5.92077	0.5584	0.08083
С	-5.08506	-1.78054	-0.13691
С	-6.01884	2.97722	0.3566
С	-7.28511	0.41144	0.33854
С	-5.95522	-2.4066	-1.03558
С	-4.41439	-2.53272	0.83303
Н	-5.52877	3.94521	0.36698
С	-7.38041	2.84151	0.6023
С	-8.00276	1.57688	0.59667
Н	-7.76555	-0.56111	0.3415
Н	-6.4626	-1.81139	-1.78783
С	-6.15168	-3.78602	-0.96168
С	-4.60515	-3.9123	0.89018
Н	-3.74978	-2.03325	1.52963
Н	-7.97926	3.72403	0.80646
Н	-9.06742	1.50811	0.79914
Н	-6.8282	-4.26949	-1.6599
С	-5.47498	-4.54155	-0.00295
Н	-4.07971	-4.49488	1.64073
Н	-5.62525	-5.61553	0.04912

 Table S7 Cartesian coordinates for the optimized structure 3e.

Energy: -1742.99108680 hartrees

Atom	Х	Y	Z
Ν	-1.38856	0.94583	-0.46236
С	-1.63828	2.34442	-0.53018
С	-2.4436	0.03097	-0.77774
С	-2.58025	2.85985	-1.43348
С	-0.97052	3.2299	0.33388
С	-3.59348	-0.06135	0.04333
С	-2.32595	-0.77991	-1.91392
С	-2.84704	4.22781	-1.46734
Н	-3.1012	2.18578	-2.10439
С	-1.23252	4.5964	0.27958
Н	-0.24974	2.83975	1.04456
С	-4.63681	-0.96427	-0.33594
С	-3.75368	0.70127	1.25122
С	-3.33054	-1.67	-2.26926
Н	-1.4305	-0.69636	-2.52116
С	-2.17407	5.10604	-0.61771
Н	-3.58075	4.6073	-2.17274
Н	-0.70642	5.26492	0.95519
С	-5.81515	-1.07108	0.46463
С	-4.50303	-1.77514	-1.50438
С	-4.8773	0.59379	2.01242
Н	-2.95578	1.36896	1.55239
Н	-3.21899	-2.28345	-3.15898
Η	-2.3813	6.17105	-0.65096
С	-5.95251	-0.28455	1.64801
С	-6.86098	-1.96916	0.08726
С	-5.56886	-2.67017	-1.85708
Η	-4.97498	1.17755	2.92392
С	-7.12092	-0.40258	2.41789
С	-8.01139	-2.05209	0.88838
С	-6.69654	-2.76094	-1.1001
Η	-5.45458	-3.27859	-2.75026
С	-8.13794	-1.27603	2.03872
Η	-7.22322	0.19709	3.31828
Η	-8.80668	-2.73453	0.60083
Η	-7.49533	-3.44183	-1.38152
Η	-9.03507	-1.35493	2.64567
С	-0.07264	0.43844	-0.33877
С	0.14552	-0.79935	0.2946
С	1.03723	1.12711	-0.85714
С	1.42548	-1.32083	0.4067
Н	-0.69862	-1.34633	0.70024

С	2.31997	0.60638	-0.72773
Н	0.89176	2.0673	-1.37663
С	2.54281	-0.62466	-0.08927
Н	1.58476	-2.27944	0.88769
Н	3.14751	1.15319	-1.16425
С	3.86272	-1.25819	0.02945
Ν	4.02284	-2.56535	0.06893
Ν	5.0827	-0.56998	0.07554
С	5.38463	-2.77903	0.14801
С	6.07594	-1.54643	0.15272
С	5.32361	0.82776	0.23951
С	6.10115	-3.98113	0.219
С	7.46598	-1.46726	0.25035
С	6.09033	1.51159	-0.71004
С	4.82734	1.50194	1.3602
Н	5.57485	-4.93	0.21125
С	7.48739	-3.91228	0.30458
С	8.15906	-2.67372	0.32335
Н	7.98468	-0.51468	0.27118
Н	6.46496	0.97686	-1.57686
С	6.35612	2.87045	-0.53712
С	5.08547	2.86271	1.51777
Н	4.24485	0.9569	2.09518
Н	8.06723	-4.82869	0.36113
Н	9.24235	-2.65766	0.39707
Н	6.95179	3.39869	-1.27541
С	5.85136	3.54917	0.57305
Н	4.69561	3.38479	2.38631
Н	6.05514	4.60765	0.70282

Fig. S11 Frontier molecular orbitals of the selected compounds 3a & 3b.

Fig. S12 Frontier molecular orbitals of the selected compounds 3c - 3e.

Fig. S14 ¹³C NMR spectrum of 3a in CDCl₃.

Fig. S16 ¹³C NMR spectrum of **3b** in CDCl₃.

Fig. S18 ¹³C NMR spectrum of 3c in CDCl₃.

130 9.40 use 1.00 d3

Fig. S22 ¹³C NMR spectrum of 3e in CDCl₃.