1	Electronic Supplementary Information			
2				
3	SERS-active Ag@Au core-shell NPs assemblies for DNA			
4	detection			
5	Yuan Zhao ^{1,2} , Liqiang Liu ¹ , Hua Kuang ¹ , Libing Wang ¹ , Chuanlai Xu ^{1*}			
6	¹ State Key Lab of Food Science and Technology, School of Food Science and			
7	Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PRC			
8	² The Key Lab of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Materials			
9	Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PRC			
10				
11	Captions:			
12	Experimental Section			
13	Fig. S1 Representative TEM images of single Ag NPs.			
14	Fig. S2 (a-f) TEM images of Ag NPs assemblies at 2, 5, 10, 20, 30 and 40 cycles.			
15	Fig. S3 Statistical analysis of Au shell thickness.			
16	Fig. S4 SERS spectrum of Ag NPs assemblies at different cycles.			
17	Fig. S5 UV-vis spectra of Ag@Au core-shell NPs assemblies at different DNA concentration.			
18	Fig. S6 (a, b) TEM images of Ag@Au NPs assemblies in the presence of 1fM DNA _{EC} . (c) SERS			
19	intensity of assemblies at different concentration of templates. (1) Control groups (1fM λ DNA, 0			
20	cycle); (2) 1fM DNA _{EC} , 20 cycles; (3) 200 aM λ DNA and 1fM DNA _{EC} , 20 cycles; (4) 2 fM λ DNA			
21	and 1fM DNA _{EC} , 20 cycles.			
22	Table S1. Detected results of DNA spiked into PCR buffer.			
23				

1 Experimental Section

2 Materials and Reagents.

Silver nitrate (AgNO₃), poly-N-vinyl-2-pyrrolidone (PVP), sodium borohydride (NaBH₄) and 3 hydroxylamine hydrochloride (NH₂OH-HCl) were purchased from Sinopharm Chemical Reagent 4 Beijing Co., Ltd., Beijing, China. Chloroauric acid (HAuCl₄), trisodium citrate, L-sodium 5 ascorbate and thiolated polyethylene glycol (PEG₁₀₀₀-SH, Mw 1000) were purchased from Sigma-6 Aldrich. Millipore-Q water used throughout the experiments was purified using the Milli-Q device 7 (18.2 M Ω , Millipore, Molsheim, France). All glassware was cleaned with freshly prepared aqua 8 regia (V_{HNO3} : $V_{HC1} = 1 : 3$) and rinsed several times with Millipore-Q water. PCR buffer, dNTP 9 and Taq DNA polymerase were purchased from Shanghai Sangon, China. All DNA fragments 10 purified by high-performance liquid chromatography were synthesized by Shanghai Sangon 11 Biological Engineering Technology & Services Co. Ltd, including λ DNA as the template, forward 12 primers and reverse primers. The amplification length of the primers was 50 bp. 13

14 Amplified Target Sequences: TGG CTG ACC CTG ATG AGT TCG TGT CCG TAC AAC TGG

15 CGT AAT CAT GGC CC

16 Forward primers: 5'-SH-(CH₂)₆-TGG CTG ACC CTG ATG AGT TCG-3'

17 Reverse primers: 5'-SH-(CH₂)₆-GGG CCA TGA TTA CGC CAG TT-3'

18 Preparation of primer-modified Ag NPs.

19 18.0 ± 2.3 nm Ag NPs were synthesized as follows: 5 mL 1% (by weight) PVP solution as 20 the stabilizer agent was added to 20 mL Millipore-Q water in a water-ice bath. 0.6 mL 1% (by 21 weight) NaBH₄ solution was mixed with the above solution under vigorous stirring. Then, 5 mL 22 15 mM AgNO₃ solution and 5 mL 1% PVP solution were slowly injected into the mixture by two 23 constant-flow pumps at a rate of 30 mL/h. Finally, the reaction solution was kept at 80°C for 2 h to 24 remove excess NaBH₄ before being stored at 4°C.

The as-fabricated Ag NPs (1 mL) were centrifuged at 5400 g for 10 min, and re-suspended in 26 200 μ L Millipore-Q water. 50 μ L concentrated Ag NPs were respectively reacted with 50 μ L F₅₀ 27 and 50 μ L R₅₀ at a molar ratio of 1:100 for 12 h. The Ag NPs-primer conjugates were centrifuged 28 at 5400 g for 10 min to remove the unreacted primers, and then re-suspended in 50 μ L Millipore-Q 1 water. PEG₁₀₀₀-SH was further modified on the Ag NPs-primer conjugates at a molar ratio of 5:1

2 to improve their stability in PCR buffer.

3 PCR-based Ag NPs assemblies.

5 μL 10 × PCR buffer, 1 μL 1 mM dNTP, 0.5 μL λ DNA and 0.5 U Taq DNA polymerase were mixed in 37 μL Millipore-Q water. 3 μL Ag NPs-F₅₀ conjugates and 3 μL Ag NPs-R₅₀ conjugates were added to the above solution. The optimized PCR process was performed as follows: 94°C (3 min), 94°C (30 s), T_m 60°C (30 s), 72°C (1 min) and 4°C (10 min) after 2, 5, 10, 20, 30, and 40 cycles. PCR products were centrifuged at 5400 g for 10 min and re-suspended in Millipore-Q water at 1/5 of the original volume.

10 Construction of Ag@Au core-shell NPs assemblies.

50 μ L five-fold concentrated Ag NPs assemblies were added to a mixture containing 200 μ L 20.1 M PBS and 100 μ L 1% PVP. 50 μ L 5 mM HAuCl₄ solution and 50 μ L 10 mM NH₂OH-HCl 3 solution were injected into the above solution. The mixture was shaken for 3 h at room 4 temperature, and then centrifuged and re-suspended in 50 μ L Millipore-Q water.

15 SERS measurements

4-nitrothiophenol (4-NTP), as a standard Raman reporter molecule, was modified on the surface of Ag NPs assemblies and Ag@Au core-shell NPs assemblies after 2, 5, 10, 20, 30 and 40 cycles through Ag-SH/Au-SH covalent bonds. The final concentration of 4-NTP was 2 μ M. The mixtures reacted for 12 h and were centrifuged at 5400 g for 10 min to remove the unmodified 4-NTP. SERS spectrum of assemblies bearing 2 μ M 4-NTP was measured through LabRam-HR800 Micro-Raman spectrometer.

22 SERS signal-based DNA detection.

Ag NPs assemblies were prepared at 20 cycles under different DNA concentrations ranging from 1.56 pM to 156 zM, and then a layer of Au shell at 50 μ L 5 mM HAuCl₄ solution and 50 μ L 10 mM NH₂OH-HCl solution were deposited. After centrifugation, SERS intensity of the Ag@Au core-shell NPs assemblies after modification with 4-NTP was measured. A standard curve was established by plotting the SERS intensity against the DNA concentration. To evaluate the accuracy of the Raman sensor in DNA detection, a recovery test was performed by spiking the PCR buffer with different concentrations of DNA. The SERS signals of interface-PCR products 1 assembled at known DNA concentrations were measured, and the percent recovery was calculated

2 based on the established standard curve.

3 Instrumentation and Measurement.

The structures of Ag NPs, Ag NP assemblies and Ag@Au core-shell NPs assemblies were characterized using a JEOL JEM-2100 transmission electron microscope (TEM) operated at 200 kV. The UV-vis spectra of NPs and assemblies were measured by a UNICO 2100 PC UV-vis spectrophotometer. SERS of the assemblies were obtained by a LabRam-HR800 Micro-Raman spectrometer with Lab-spec 5.0 software. The slit and pinhole were set at 100 and 400 mm, respectively, in a confocal configuration with a holographic grating (600 g/mm) and an air-cooled He-Ne laser for 632.8 nm excitation with a power of ca. 8 mW.

<u>100</u> nm

Fig. S1 Representative TEM images of single Ag NPs.

12

13 14

Fig. S2 (a-f) TEM images of Ag NPs assemblies at 2, 5, 10, 20, 30 and 40 cycles.

6 The interparticle distance between Ag NPs was 16.5 nm determined by the length of amplified 7 primers (50 bp, 16.5 nm), and the thickness of Au shell was statistically analyzed to 6.4 ± 0.5 nm,

⁸ thus the interparticle gap between Ag@Au core-shell NPs was around 3.7 ± 1.0 nm.

Fig. S6 (a, b) TEM images of Ag@Au NPs assemblies in the presence of 1fM DNA_{EC} after 20
cycles. (c) SERS intensity of Ag@Au NPs assemblies at different concentration of templates. (1)
Control groups (1fM λDNA, 0 cycle); (2) 1fM DNA_{EC}, 20 cycles; (3) 200 aM λDNA and 1fM
DNA_{EC}, 20 cycles; (4) 2 fM λDNA and 1fM DNA_{EC}, 20 cycles.

Table S1. Detected	results of DNA	spiked into	PCR buffer.

Spiked concentration (fM)	Detected Concentration Mean ± SD (fM)	Recovery (%) Mean \pm SD ^a
100	107.2 ± 5.35	104.51 ± 2.27
10	11.2 ± 1.89	105.24 ± 3.61
1	0.98 ± 0.085	95.68 ± 2.67
0.5	0.48 ± 0.021	97.53 ± 1.29
0.1	0.095 ± 0.0052	96.49 ± 1.86
0.05	0.047 ± 0.0037	93.18 ± 3.78

9 ^aSD, standard deviation, was calculated based on three experiments.