Supporting Information

Facile synthesis of gold nanoparticles using aggregates of pentacenequinone derivative and their catalytic activity for oxidative polymerization, homocoupling and reduction

Kamaldeep Sharma, Vandana Bhalla* and Manoj Kumar

Department of Chemistry, UGC-Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India. Email : yanmanan@yahoo.co.in

Contents

- **S3** General experimental procedures.
- **S4-S6** Comparison of present method for the homocoupling of phenylboronic acid, reduction of *p*-nitrophenol and *p*-nitroaniline by gold nanoparticles of derivative **3** over other reported systems in literature.
- **S7** General Procedure for homocoupling reaction of phenyl boronic acid and spectroscopic characterization of the products through NMR analysis.
- **S8** Catalysis of *p*-nitroaniline and *p*-nitrophenol and spectroscopic characterization of the products through NMR analysis.
- **S9** TEM image and Size distribution of solution of AuNPs of derivative **3** in 60% H₂O/THF mixture.
- **S10** Fluorescence spectrum of derivative **3** in 60% H₂O/THF mixtures.
- S11 UV-vis spectra of compound 3 upon additions of various metal ions as their perchlorate and chloride salt in H_2O/THF (6/4).
- S12 Graphical representation of rate of formation of gold nanoparticles of derivative **3**.
- **S13** Stern-Volmer plot of aggregates of derivative **3** in the presence of Au^{3+} ions.
- S14 Fluorescence spectra of derivative 3 upon additions of various metal ions as their perchlorate and chloride salt in H_2O/THF (6/4).
- **S15** Competitive and selectivity graph of derivative **3** to various metal ions.
- **S16** EDX spectrum and XRD diffraction patterns of resulting precipitates obtained after addition of AuCl₃ to the aqueous solution of derivative **3**.
- S17 UV-vis spectra of compound 3 upon various additions of Au^{3+} ions in THF.

- **S18** Graphical representation of absorbance vs time plot and regression plot for the reduction of *p*-nitroaniline and *p*-nitrophenol catalyzed by gold nanoparticles of derivatives **3**.
- **S19** Blank experiment for the reduction of *p*-nitroaniline and *p*-nitrophenol.
- S20 AuNPs catalyst-reusing experiment.
- **S21** ¹H NMR of spectrum of polyaniline.
- **S22** ¹H NMR of spectrum of derivative **3**.
- S23 Mass spectrum of derivative 3.
- **S24** ¹H NMR of spectrum of biphenyl.
- **S25** ¹H NMR of spectrum of isolated phenol.
- **S26** ¹H NMR of spectrum of p-phenylenediamine.
- **S27** ¹H NMR of spectrum of p-aminophenol.

General experimental Procedures:

All reagents were purchased from Aldrich and were used without further purification. THF was dried over sodium and benzophenone and kept over molecular sieves overnight before use. UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer, with a quartz cuvette (path length, 1 cm). The cell holder was thermostatted at 25^o C. The fluorescence spectra were recorded with a SHIMADZU 5301 PC spectrofluorimeter. Scanning electron microscope (SEM) images were obtained with a field-emission scanning electron microscope (SEM CARL ZEISS SUPRA 55). TEM images were recorded from Transmission Electron Microscope (TEM)-HITACHI. Atomic Force Microscopy (AFM) images were recorded with PARK XE70 instrument. ¹H NMR spectra were recorded on a JEOL-FT NMR–AL 300 MHz and Avance-II (Bruker) 400 MHz spectrophotometers using CDCl₃ as solvent and tetramethylsilane SiMe₄ as internal standards. UV-vis studies were performed in THF and H₂O/THF mixture. Data are reported as follows: chemical shifts in ppm (δ), multiplicity (s = singlet, d = doublet, br = broad singlet m = multiplet), coupling constants *J* (Hz), integration, and interpretation. Silica gel (60–120 mesh) was used for column chromatography.

Table S1: Comparison of present method for the homocoupling of phenylboronic acid by gold nanoparticles of derivative **3** over other reported systems in literature.

Physical state of AuNPs used	Method of formation of AuNPs catalyst	Amount of AuNPs used for homocouplin g	Nature of AuNPs catalyst	Materials used	Solvent	Temp. (in °C)	Rx. Time	%Yield Ph-Ph/Ph- OH	Papers
Aqueous solution	Wet Chemical Method (Room temp.)	2 mM, 1 mL	Un- supported	AuNPs, K2CO3	H ₂ O/Toluen e	70 ºC	7 h	80/20	Present manuscript
Aqueous solution	Chemical reduction in organic synthesizer at 0 ^o C	0.5 mM, 10 mL	PVP stabilized	Au: PVP, acetate buffer, K ₂ CO ₃	H ₂ O	30 °C	9 h	74/26	<i>Chem.</i> <i>Commun.,</i> 2013, 49 , 2542- -2544
Solid	Chemical reduction below 25 ^o C	10 mg catalyst (Au loading 0.66 mol %)	Supported	Carbon- Supported AuNPs	H ₂ O/Toluene	70 ºC	7 h	86/12	<i>Chem.</i> <i>Commun.</i> , 2013, 49 , 8235- -8237
Solid	Anion- exchange followed by calcination at 400 ^o C	30 mg of Au catalyst	Supported	Au/MAO, dodecane	МеОН	100 °C	12h	90/10	<i>Chem.</i> <i>Commun.,</i> 2012, 48 , 5476–5478
Aqueous solution	Chitosan stabilized chemical reduction of AuCl ₄ at 0 ^o C	0.5 mM, 10 mL	Supported	Au:chit, acetate buffer, K ₂ CO ₃	H ₂ O	47 ºC	24 h	93/6	Chem. Asian J., 2012, 7, 55
Aqueous solution	Redox rection and polymer stabilized	0.5 mM, 10 mL	PVP stabilized	PVP- Stabilized AuNPs, K ₂ CO ₃	H ₂ O	80 °C	24 h	74/26	<i>Tetrahedron</i> <i>Letters</i> , 2012, 53 , 6104–6106.

Table S2: Comparison of present method over other reported procedure in literature for the reduction of *p*-nitrophenol to *p*-aminophenol by gold nanoparticles of derivative **3**.

Physical state of catalyst used	Materials used	Amount of catalyst used for reduction of <i>p</i> -nitrophenol	Reaction time	Rate constant	Temp. (in °C)	Journals
Aqueous solution	AuNPs, NaBH4	5 µL	8 min.	8.85×10 ⁻³ sec ⁻¹ (0.53 min ⁻¹)	Room temp.	Present manuscript
Solid	Mesoporous gold leaves, N ₂ H ₄ ·H ₂ O	1 mg	10 min.	8.16×10 ⁻³ sec ⁻¹ (0.49 min ⁻¹)	Room temp.	ACS Appl. Mater. Interfaces 2014, 6 , 9134–9143
Solid	γ-Fe ₂ O ₃ @m- SiO2–SH–Au	13 µg	6 min.	5.33×10 ⁻³ sec ⁻¹ (0.32 min ⁻¹)	Room temp.	J. Mater. Chem. A, 2014, 2, 10485–10491
Aqueous solution	Au@IB–YSN, NaBH4	0.1 mL	6.66 min. (400 sec.)	7.7×10 ⁻³ sec ⁻¹ (0.46 min ⁻¹)	25 °C	<i>Chem. Commun.</i> , 2013, 49 , 9591-9593
Solid	Au-PNIPA yolk– shell, NaBH ₄	-	40 min.	7.5×10 ⁻⁴ sec ⁻¹ (0.045 min ⁻¹)	15 °C	Angew. Chem. Int. Ed. 2012, 51, 2229 –2233
Solid	USP Au/C, NaBH ₄ (ultrasonic spray pyrolysis)	10 µg	9 min.	1.0×10 ⁻² sec ⁻¹ (0.60 min ⁻¹)	25 ºC	<i>Chem. Commun.</i> , 2012, 48 , 11094–11096
Solid	Au/graphene hydrogel, NaBH4	0.1 mg	12 min.	3.17×10 ⁻³ sec ⁻¹ (0.19 min ⁻¹)	Room temp.	J. Mater. Chem., 2012, 22, 8426–8430
Solid	NAP-Mg-Au(0), NaBH ₄	15 mg	7 min.	7.6×10 ⁻³ sec ⁻¹ (0.456 min ⁻¹)	Room temp.	Green Chem., 2012, 14 , 3164–3174

Physical state of catalyst used	Materials used	Amount of catalyst used for reduction of <i>p</i> -nitroaniline	Reaction time	Rate constant	Recyclability of catalyst	Temp. (in °C)	Journals
Aqueous solution	AuNPs, NaBH4	5 µL	18 min.	4.53×10 ⁻³ sec ⁻¹ (0.272 min ⁻¹)	Yes	Room temp.	Present manuscript
Solid	Fe ₃ O ₄ @Au/ MIL-100 (Fe), NaBH ₄	1 mg	25 min.	2.53×10 ⁻³ sec ⁻¹ (0.152 min ⁻¹)	Yes	-	Catal. Sci. Technol., 2014, 4 , 3013-3024
Aqueous solution	BPS-30- AuNPs, KBH ₄	20 µL	25 min.	2.53×10 ⁻³ sec ⁻¹ (0.152 min ⁻¹)	No	Room temp.	<i>Cryst. Eng. Comm,</i> 2012, 14 , 7600– 7606
Aqueous solution	AuNCs, NaBH ₄	347 µL	15-40 min.	3.12×10 ⁻³ sec ⁻¹ (0.187 min ⁻¹)	No	36-40 ⁰ C	J. Phys. Chem. C, 2012, 116 , 23757–23763
Aqueous solution	Au–GO, NaBH ₄	0.25 mL	40 min.	2.06×10 ⁻³ sec ⁻¹ (0.124 min ⁻¹)	No	Room temp.	J. Mater. Chem., 2011, 21 , 15431– 15436
Aqueous solution	AuNPs, ice cold KBH ₄	-	56 min.	$7.33 \times 10^{-4} \text{sec}^{-1}$ (0.044 min ⁻¹)	No	Ice cold	J. Phys. Chem. C 2009, 113 , 17730– 17736
Aqueous solution	AuNPs, ice cold NaBH ₄	-	64 min.	4.67×10 ⁻⁴ sec ⁻¹ (0.028 min ⁻¹)	No	Ice cold	J. Phys. Chem. C 2009, 113 , 5150– 5156

Table S3: Comparison of present method over other reported procedure in literature for the reduction of p-nitroaniline to p-phenylenediamine by gold nanoparticles of derivative **3**.

General Procedure for Homocoupling reaction

The aerobic homocoupling of phenyl boronic acid was carried out in a 10 ml Round Bottom Flask (RBF) at 70° C. Phenylboronic acid (0.3 mmol, 36.6 mg), K_2CO_3 (0.425 mmol, 58.7 mg), 1 ml of 2 mM gold nanoparticles solution (2 µmol) were taken in a RBF and then 0.5 ml water and 1 ml toluene were added to the mixture. The mixture was heated at 70 °C with constant stirring for 7 h, under open flask condition. The progress of the reaction was monitored by TLC. After 7 h, the reaction mixture was extracted by ethyl acetate. The combined organic layer was concentrated and the crude product was purified by column chromatography, using hexane as eluent to obtain biphenyl (80%) and phenol (20%).

Spectroscopic characterization of the products through NMR analysis

Biphenyl. ¹H NMR (300 MHz, CDCl₃): δ = 7.35 [d, 4H, J = 9.0 ArH], 7.44 [t, 4H, J = 7.5 ArH] 7.60 [d, 2H, J = 9.0 ArH], (see pS24 in ESI⁺).

Phenol. ¹H NMR (300 MHz, CD₃OD): $\delta = 4.89$ [s, 1H, OH], 6.32 [d, 2H, J = 3.0 ArH], 6.57 [t, 1H, J = 7.5 ArH], 7.38 [d, 2H, J = 3.0 ArH] (see pS25 in ESI[†]).

Reduction of *p*-nitroaniline over gold nanoparticles of derivative **3**. 300 μ L of 1 mM *p*nitroaniline, 300 μ L of 10 mM NaBH₄ and 5 μ L (10 nmol) of gold nanoparticles of derivative **3** were mixed. After that, different volumes of deionized water were added to the reaction mixture to nullify the dilution effect. The mixture was stirred vigorously with a magnetic stirrer. After stirring the reaction mixture, a colour change of the reaction mixture from yellow to colourless was observed which indicate the reduction of *p*-nitroaniline to *p*-phenylenediamine.¹ Complete reduction of *p*-nitroaniline to *p*-phenylenediamine over gold nanoparticles of derivative **3** took 18 minutes. The formation of the reduced product *p*-phenylenediamine was confirmed from UV-vis spectroscopy (See Fig. 7A in manuscript) and ¹H-NMR spectrum of the product (See pS26 in ESI†).

Reduction of *p*-nitrophenol over gold nanoparticles of derivative **3**. To a 300 μ L of an aqueous solution of *p*-nitrophenol (1 mM), 300 μ L of 10 mM NaBH₄ and 5 μ L (10 nmol) of AuNPs of derivative **3** were added. The mixture was diluted with water and stirred vigorously with a magnetic stirrer. The diluted solution was analyzed by UV-vis spectrometry and the conversion could be calculated according to the intensity decrease of *p*-nitrophenol. The reaction was stopped when the yellow color of the mixture disappeared, which indicate the reduction of *p*-nitrophenol to *p*-aminophenol.² Complete reduction of *p*-nitrophenol to *p*-aminophenol over gold nanoparticles of derivative **3** took 8 minutes. The formation of the reduced product *p*-aminophenol was confirmed from UV-vis spectroscopy (See Fig. 7B in manuscript) and ¹H-NMR spectrum of the product (See pS27 in ESI†).

Spectroscopic characterization of the products through NMR analysis

p-phenylenediamine. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.29$ [s, 4H, NH₂], 6.57 (s, 4H, ArH] (See pS26 in ESI[†]).

p-aminophenol. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.71$ [s, 2H, NH₂], 6.60 [d, 2H, J = 9 ArH], 6.67 [d, 2H, J = 6 ArH] (See pS27 in ESI[†]).

¹V. Reddy, R. S. Torati, S. Oh and C. Kim, Ind. Eng. Chem. Res., 2013, 52, 556.

² K. Layek, M. L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki and H. Maheswaran, *Green Chem.*, 2012, **14**, 3164.

Fig. S1 (A) Transmission electron microscope (TEM) image and (B) Size distribution of colloidal suspension of derivative **3**. Scale bar 100 nm

Fig. S2 Fluorescence spectrum of derivative 3 (10 $\mu M)$ in 60% H_2O/THF mixture.

Fig. S3 UV-vis spectra of derivative 3 (10 μ M) upon additions of 200 equivalents of various metal ions as their perchlorate salt in H₂O/THF (6/4), buffered with HEPES, pH = 7.0.

Fig. S4 UV-vis spectra of derivative 3 (10 μ M) upon additions of 200 equivalents of various metal ions as their chloride salt in H₂O/THF (6/4), buffered with HEPES, pH = 7.0.

Fig. S5 Graphical representation of the rate of formation of gold nanoparticles of derivative **3**. (A) Time (min.) vs. absorbance plot at 560 nm (B) regression plot of A.

The first order³ rate constant for the formation of gold nanoparticles was calculated from the changes of intensity of absorbance of aggregates of derivative **3** at 560 nm wavelength in the presence of Au^{3+} ions at different time interval⁴.

From the time vs. absorbance plot at fixed wavelength 560 nm by using first order rate equation we get the rate constant = $k = slope \times 2.303 = 7.18 \times 10^{-5} Sec^{-1}$.

³ Luty-Błocho, M.; Pacławski, K.; Wojnicki, M.; Fitzner, K. Inorganica Chimica Acta 2013, 395 189–196.

⁴ Goswami, S.; Das, S.; Aich, K.; Sarkar, D.; Mondal, T. K.; Quah, C. K.; Fun, H-K. *Dalton Trans.* **2013**, *42*, 15113–15119.

Fig. S6 Variation of fluorescence intensity of aggregates of derivative **3** (10 μ M) at 477 nm in H₂O/THF (6:4, v/v) buffered with HEPES, pH =7.0, $\lambda_{ex.}$ = 287 nm in the presence of different concentrations of Au³⁺ ions (I₀/I; I₀ = initial fluorescence intensity at 477 nm; I= fluorescence intensity after the addition of Au³⁺ ions at 477 nm). Inset shows the linear Stern-Volmer plot at lower concentration of Au³⁺ ions.

Fig. S7 Fluorescence spectra of derivative 3 (10 μ M) upon additions of various metal ions (200 equivalents) as their perchlorate salt in H₂O/THF (6/4) buffered with HEPES, pH = 7.0.

Fig. S8 Fluorescence spectra of derivative 3 (10 μ M) upon additions of various metal ions (200 equivalents) as their chloride salt in H₂O/THF (6/4) buffered with HEPES, pH = 7.0.

Fig. S9 Fluorescence response of derivative **3** (10 μ M) to various metal ions (200 equivalents) in H₂O/THF (6/4); buffered with HEPES, pH = 7.0; $\lambda_{ex} = 287$ nm. Bars represent the emission intensity ratio (I_o – I)/I_o ×100 (I_o = initial fluorescence intensity at 477 nm; I = final fluorescence intensity at 477 nm after the addition of Au³⁺ ions). (A) The sky blue bars represent the addition of individual metal ions, (B) the red bars represent the change in the emission that occurs upon the subsequent addition of Au³⁺ (200 equivalents) to the above solution.

Fig. S10 Energy dispersive X-rays (EDX) analysis of the resulting precipitates using secondary electrons by SEM.

Fig. S11 XRD patterns of precipitates obtained after adding AuCl₃ to the aqueous solution of derivative 3.

Fig. S12 UV-vis spectra of derivative 3 (10 μ M) upon various additions of Au³⁺ ions in THF. Inset: enlarge UV-vis spectra of compound 3 (10 μ M) in the range of 500-700 nm.

Fig. S13 Graphical representation of time vs. absorbance plot and regression plot for the reduction of *p*-nitroaniline (A) and (B) and *p*-nitrophenol (C) and (D) catalyzed by gold nanoparticles of derivative **3**.

Catalytic reduction of *p*-nitroaniline and *p*-nitrophenol follows Pseudo-first-order kinetics.⁵ The apparent rate constants for the reduction of *p*-nitroaniline and *p*-nitrophenol by gold nanoparticles of derivatives **3** listed in following table:

Gold	Nitro derivatives	Rate constant		
nanoparticles				
	<i>p</i> -nitroaniline	4.53×10 ⁻³ sec ⁻¹		
Derivative 3	<i>p</i> -nitrophenol	8.85×10 ⁻³ sec ⁻¹		

^{5 (}a) Zelentsov, S. V.; Simdyanov, I. V.; Kuznetsov, M. V. *High Energy Chemistry* 2005, **39**, 309; (b) M-Q. Yang, X. Pan, N. Zhang and Y-J. Xu, *CrystEngComm*, 2013, **15**, 6819.

Fig. S14 UV–visible spectra for the chemical reduction of p-nitroaniline using NaBH₄ in the absence of gold nanoparticles catalyst: (a) 0 min and (b) after 24 hours.

Fig. S15 UV–visible spectra for the chemical reduction of p-nitrophenol after adding the NaBH₄ in the absence of gold nanoparticles catalyst: (a) 0 min and (b) after 24 hours.

Procedure for the catalyst-reusing sequence in the AuNPs-catalyzed model reaction

The catalytic reduction of *p*-nitroaniline to *p*-phenylenediamine in the presence of NaBH₄ aqueous solution was chosen as a model reaction to investigate the reusability of AuNPs catalyst. After the catalytic reduction of *p*-nitroaniline, resulting reaction mixture containing AuNPs catalyst was subjected to reaction for the next catalytic sequence by adding *p*-nitroaniline (10 mg , 0.07 mmol) and NaBH₄ (2.6 mg, 0.07 mmol) to the reaction mixture. After seven cycles, colour of the reaction mixture changes from yellow to reddish brown.

Fig. S16 Depiction of the catalyst-reusing

¹H NMR of polyaniline in CDCl₃

¹H NMR spectrum of derivative **3**

Mass spectrum of derivative 3

Figure S19 Mass spectrum of derivative 3.

¹H NMR of biphenyl in CDCl₃

Fig. S20 The ¹H NMR spectra of biphenyl in CDCl₃.

¹H NMR of phenol in CD₃OD

¹H NMR of *p*-phenylenediamine in CDCl₃

Fig. S22 The ¹H NMR spectra of the reduced product *p*-Phenylenediamine in CDCl₃.

¹H NMR of *p*-aminophenol in CDCl₃

Figure S23 ¹H NMR spectrum of reduced product *p*-aminophenol.