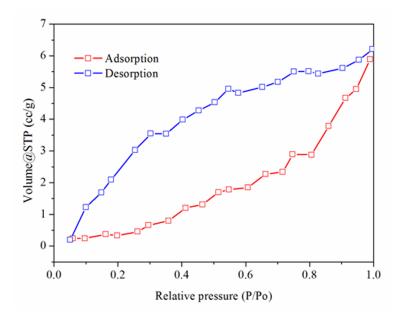
Supporting Information

Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic

hydrogels and their multiple response behaviors

Wenming Zhang,*a Zhu Sha, a Ying Huang, a Yunping Baia, Ning Xia and Yucang Zhang,*b


^a College of Physics Science and Technology, Hebei University, Baoding, Hebei province, China. Fax: +86 312

5079473; Tel: +86 312 5079473; E-mail: wmzhang@hbu.edu.cn

^b College of Materials and Chemical Engineering, Hainan University, Haikou province, China. Fax: +86 898 66279219; Tel: +86 898 66279219; E-mail: yczhang@hainu.edu.cn

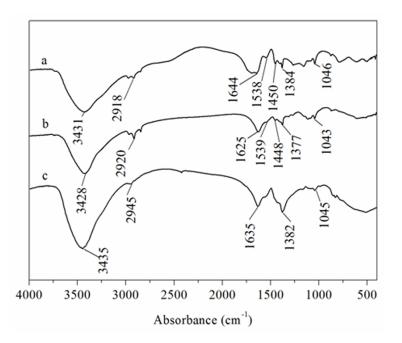


Figure S1. Photographs of wet hydrogel (a), dried hydrogels (b), and hydrogel after swelling equilibrium (c).

Figure S2. Nitrogen sorption isotherm of cellulose-based ionic hydrogel (the discharge voltage and discharge time is 570 V and 90 s, respectively).

Figure S2 shows the N_2 sorption isotherm of the freezed dried cellulose-based ionic hydrogel after absorbing water sufficiently. The sample was measured using automated surface area and pore size analyzer (Quantachrome Autosorb-1 MP). The surface area was 2.131 m²/g.

Figure S3. FT-IR of cellulose-based ionic hydrogels after adsorbing heavy metal ions (a) Na^+ , (b) Zn^{2+} , and (c) Fe^{3+} .

Figure S3 shows the infrared spectrogram of cellulose-based ionic hydrogels after adsorbing heavy metal ions. As the Na⁺, Zn²⁺, Fe³⁺ ions were adsorbed by cellulose-based ionic hydrogels, the peak at 1722 cm⁻¹ (C=O stretching vibration) (Fig. 7b) was disappeared completely implying that complexation was possible and new peaks appeared at 1644, 1625, 1635 cm⁻¹ on curve (a), (b) and (c), respectively.¹ In addition, the peaks at 1543 and 1456 cm⁻¹ (the stretching vibration of COO⁻) (Fig. 7b) were shifted to lower wavenumbers after adsorbing Na⁺, Zn²⁺ metal ions, or even disappeared after adsorbing Fe³⁺. Besides, the intensity of the peaks of Zn²⁺ was weaker than Na⁺. All results indicated that oxygen atoms in cellulose-based ionic hydrogels donated unshared electron pairs to the metal ions to form coordinate-covalent bonds and the coordination between Fe³⁺/Zn²⁺ and carboxyl group was obvious stronger than that Na⁺.²⁻⁴

References:

1. Wang, X. G., Gao, J. Z. and Yang, W., Polymer Engineering and Science, 2012, 52, 2217-

2227.

 Lu, Q. F., Yu, J., Gao, J. Z., Yang, W. and Li, Y., Central European Journal of Chemistry, 2012, 10, 1349-1359.

3. Lu, Q. F., Yu, J., Gao, J. Z., Yang, W. and Li, Y., Plasma Process. Polym., 2011, 8, 803–814.

4. Peng, X. W., Zhong, L. X., Ren, J. L., and Sun, R. C., J. Agric. Food Chem., 2012, 60, 3909–3916.