Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

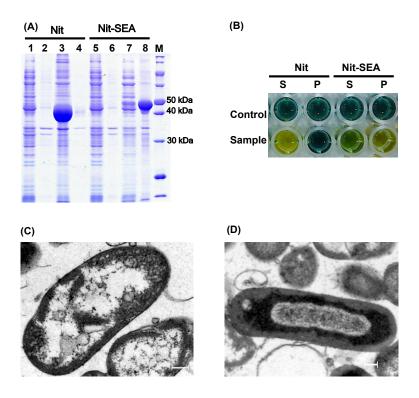
## Supplementary information (ESI)

## Self-assembly amphipathic peptides induce active enzyme aggregation that dramatically increases the operational stability of nitrilase

Xiaofeng Yang,<sup>a</sup> An Huang,<sup>a</sup> Jizong Peng,<sup>a</sup> Jufang Wang,<sup>a</sup> Xiaoning Wang,<sup>c</sup> Zhanglin Lin, \*b and Shuang Li\*<sup>a</sup>

<sup>&</sup>lt;sup>a</sup> Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology. Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China. Tel: +86 (20) 3938 0629; E-mail: <a href="mailto:shuangli@scut.edu.cn">shuangli@scut.edu.cn</a>

<sup>&</sup>lt;sup>b</sup> Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing 100084, China. Tel: +86 (10) 6277 0304; E-mail: zhanglinlin@mail.tsinghua.edu.cn


<sup>&</sup>lt;sup>c</sup> State Key Laboratory of Kidney, the Institute of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China

**Table S1**. Residual nitrilase activity of the purified Nit and Nit-SEA after cross-linked by different reagents.

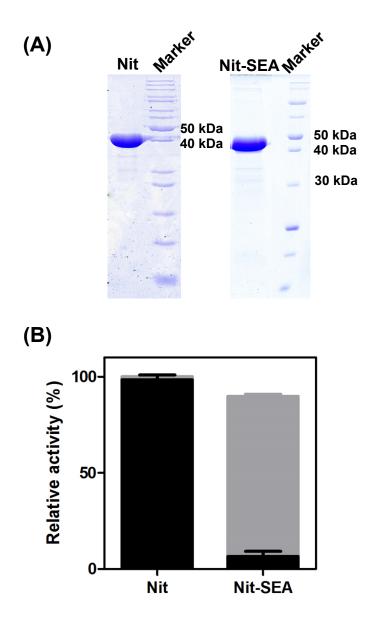

|         | Glutaraldehyde | poly-Ethyleneimine | Dextran polyaldehyde |
|---------|----------------|--------------------|----------------------|
|         | (4%)           | (5%)               | (5%)                 |
| Nit     | 0              | 0                  | 8.2                  |
| Nit-SEA | 0              | 9.6                | 29.4                 |

 Table S2 Half-lives of nitrilase of different forms (Unit: hours).

| Temperature | Nit  | Nit-i | Nit-SEA | Nit-iSEA |
|-------------|------|-------|---------|----------|
| 45 °C       | 23.8 | 58.7  | 161.0   | 237.4    |
| 50 °C       | 13.1 | 32.9  | 56.3    | 75.4     |



**Figure S1.** Active inclusion bodies formation in *E. coli* BL21(DE3) cells. (A) SDS-PAGE detection of native nitrilase (Nit) and fusion nitrilase (Nit-SEA) expression induced by 0.1 mM IPTG at 22 °C for 20 h. The supernatant of cell lysate of non-induced Nit (lane 1), IPTG induced Nit (lane 3), non-induced Nit-SEA (lane 5) and IPTG induced Nit-SEA (lane 7); and the pellets of cell lysates of non-induced Nit (lane 2), IPTG induced Nit (lane 4), non-induced Nit-SEA (lane 6) and IPTG induced Nit-SEA (lane 8); Lane M, protein molecular weight marker, Fermentas, Cat# 26630. (B) Fluorometric enzyme activity assay of the native nitrilase and the fusion nitrilase-18A using 30 mM mandelonitrile as substrate. S, supernatant fraction; P, precipitation fraction; control, recombinant cells were not induced by IPTG; sample, recombinant cells were induced by 0.1 mM IPTG at 22 °C for 22 h. Colors changed after 3 h incubation of cell lysis with the substrate in 96-well plates at 45 °C. (C) and (D) morphology of the thin-sectioned cells observed under transmission electron microscope (TEM). (C) Native nitrilase; (D) fusion nitrilase. Scale bars: 200 nm.



**Figure S2.** (A) SDS-PAGE analysis of the purified native nitrilase (Nit) and the purified fusion form (Nit-SEA). (B) Distributions of nitrilase activities in the supernatant ( $\blacksquare$ ) and precipitation ( $\blacksquare$ ) fractions of cell lysates. The activities calculated and normalized to the total activities of the native nitrilase. All enzymes were extracted from the same amount of cells (OD<sub>600</sub>) and performed in triplicate.

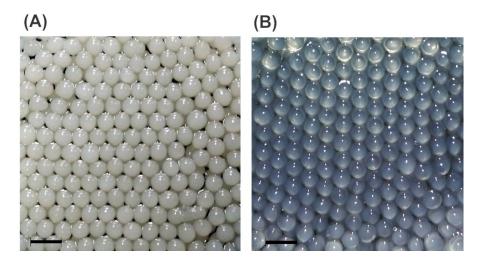



Figure S3. (A) Nit-iSEA particles and and (B) Nit-i particles. Scale bars: 2 mm.