Electronic Supplementary Information

Reduced fluorescence quenching of coumarin 102 at higher phenol mole fractions in cyclohexane-phenol and anisole-phenol solvent mixtures: Role of competitive hydrogen bonding

Nabajeet Barman and Kalyanasis Sahu*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

* Email: ksahu@iitg.ernet.in

Derivation of Equation 1:

The variation of the emission maxima in frequency v_{em}^{max} (in cm⁻¹) against mole fraction (x) can be conveniently fitted by the equation. Here, v_{em}^{max} (x) and v_{em}^{max} (x=1) are the emission maxima at a particular mole fraction of phenol (x) and in neat phenol (x=1), respectively.

$$\frac{d[v_{em}^{max}(x) - v_{em}^{max}(x=1)]}{dx} = -k[v_{em}^{max}(x) - v_{em}^{max}(x=1)]$$

$$\frac{dy}{dx} = -ku$$

Or,
$$\frac{dy}{dx} = -ky$$
, where $y = v_{em}^{max}(x) - v_{em}^{max}(x = 1)$

Integrating we obtain

$$y = y_0 e^{-kx}$$

Or, $v_{em}^{max}(x) - v_{em}^{max}(x=1) = [v_{em}^{max}(0) - v_{em}^{max}(x=1)]e^{-kx}$
Or, $v_{em}^{max}(x) = v_{em}^{max}(x=1) + [v_{em}^{max}(0) - v_{em}^{max}(x=1)]e^{-kx}$

Table S1: Fitting parameter	ers of emission ma	axima against mol	e fractions in th	ne three solve	ent mixtures
using the above equation.	Within bracket re	presents the stand	ard error of the	respective p	arameters.

Solvent Mixture	$v_{em}^{max}(x=1)$ (cm ⁻¹)	$\Delta \nu (\text{cm}^{-1})$	k
Cyclohexane-Phenol	21320 (87)	3521 (94)	25.0 (2.0)
Anisole-Phenol	21353 (77)	1606 (96)	27.0 (4.5)

Cyclohexane-Anisole	22998 (106)	1709 (123)	3.3 (0.06)	