Supporting Information

Latex Particle Template Lift-up Guided Gold Wire-Networks Via Evaporation Lithography

Saifullah Lone,^{1*} Ivan U. Vakarelski,¹Basil Chew,² Zhihong Wang² and Sigurdur T. Thoroddsen¹

Figure S1. Schematic illustration (top and side views) of the dimensions of micro- (ab) and nanowells (cd) on patterned silicon wafer used for the dry deposition of 5 μ m and 1 μ m sized latex particles.

Figure S2. Large area dry deposition of 2D monolayer of latex particles onto a patterned silicon wafer in a square array arrangement for, (a) 5 μ m and (b) 1 μ m sized latex particles.

Figure S3. Large area latex particle lift-up of a 2D monolayer of latex particles on a glass substrate, (a) 5 μ m and (b) 1 μ m sized latex particles.

Figure S4. Optical micrograph of gold microwire network fabricated at room temperature (25 C).

Figure S5. Optical image of gold nano-pattern fabricated from evaporation lithography by exploiting $1\mu m$ size latex particles. The dark patches represent the leftover debris of latex particles after oxygen plasma treatment.