Supporting Information

pH-Responsive Supramolecular Hydrogels for Codelivery of Hydrophobic and Hydrophilic Anticancer Drugs

Jing $\mathrm{Yu}^{\mathrm{a}, \mathrm{b}}$, Wei Ha ${ }^{\mathrm{a}}$, Juan Chen ${ }^{\mathrm{a}}$, Yan-ping Shia*
${ }^{a}$ Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
${ }^{b}$ University of Chinese Academy of Sciences, Beijing 100049, PR China

[^0]

Fig. $\mathbf{S 1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of mPEG formyl benzoic acid ester.

Fig. S2 ${ }^{1} \mathrm{H}$ NMR (a) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR (b) ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of NPOD-PEG.

Fig. S3 Calibration curve of DOX.

Fig. S4 The dependence of the viscoelastic moduli on frequency for various NPODPEG/ α-CD hydrogel samples. (a) NPOD-PEG $=10 \mathrm{mg} \mathrm{mL}^{-1}, \mathrm{~b}$) $\mathrm{NPOD-PEG}=30 \mathrm{mg}$ mL^{-1}.

Fig. 55 (a) Dynamic and (b) steady rheological behaviors of the diluted HCl -treated NPOD-PEG/ $\alpha-C D$ hydrogel.

Table S1. Dose-effect relationship parameters for NPOD and DOX in cancer model

Shape (sigmoidicity) and conformity of dose-effect curve (linear correlation coefficient) are represented by D_{m}, linear equation, r , respectively, where D_{m} is the antilog of x-intercept in $\mu \mathrm{g}$ $\mathrm{mL}^{-1}, \mathrm{r}$ is the linear correlation coefficient of the median-effect plot.

Table S2. Interaction of NPOD and DOX combinations in cells at different stage of carcinogenesis: combination indices at different effect levels

Cell	Combination index (CI) at:									
type	$f \mathrm{a} 0.1$	$f \mathrm{a} 0.2$	$f \mathrm{a} 0.3$	$f \mathrm{a} 0.4$	$f \mathrm{a} 0.5$	$f \mathrm{a} 0.6$	$f \mathrm{a} 0.7$	$f \mathrm{a} 0.8$	$f \mathrm{a} 0.9$	
A549	1.09	1.06	1.05	1.04	1.03	1.03	1.02	1.02	1.02	

$C I$ value $<1,=1,>1$ indicates synergism, additive effect, and antagonism, respectively. f a is the fraction effected.

[^0]: *Correspondence: Prof Yan-ping Shi, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China; E-mail: shiyp@licp.cas.cn; Fax: +86-931-4968094; Tel: +86-931-4968028

