Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

for

DFT and TD-DFT Studies on the Electronic and Optical Properties of Explosive Molecules Adsorbed on Boron Nitride and Graphene Nano Flakes

Hakkim Vovusha, ^{1, 2} and Biplab Sanyal^{1*}

¹Department of Physics and Astronomy, Uppsala University, Box-516, 751 20, Uppsala, Sweden ²Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 751 24, Uppsala, Sweden

* Correspondence to: <u>biplab.sanyal@physics.uu.se</u>

Figure S1. Frontier molecular orbitals involved in the vertical excitation of BN and G flake.

Figure S2. Frontier molecular orbitals involved in the vertical excitation of BN-explosive complexes.

Figure S3. Frontier molecular orbitals involved in the vertical excitation of G-explosive complexes.

Figure S4. Comparison BE of BN and G-explosive complexes with different basis sets using B3LYP-D/BS1 or BS2 or BS3 (BS1:6-311++G(2d,2p), BS2: 6-311G(2df,2pd) and BS3: cc-pVTZ).

Figure S5. Energy minimized structures of complexes of TNT with 2D periodic BN and G sheets.

Figure S6. Calculated partial density of states (PDOS) of BN-explosive complexes with B3LYP-D/6-31+G(d,p) level of theory. (Green: BN, Blue: explosive molecule, Red: Occupied MO's, Cyan: Unoccupied MO's).

Figure S7. Calculated partial density of states (PDOS) of BN-explosive complexes with B3LYP-D/6-31+G(d,p) level of theory (Green: BN, Blue: explosive molecule, Red: Occupied MO's, Cyan: Unoccupied MO's).

System	НОМО	LUMO
BN-HMTD		
BN-HMX	**	
BN-PETN	+	
BN-RDX		
BN-TATP		
BN-TNT		

Figure S8. HOMO and LUMO isosurfaces of BN-explosive complexes at B3LYP-D/6-31+G(d,p) level of theory.

System	НОМО	LUMO
G-HMTD		
G-HMX		
G-PETN		
G-RDX		*****
G-TATP		
G-TNT		

Figure S9. HOMO and LUMO isosurfaces of G-explosive complexes at B3LYP-D/6-31+G(d,p) level of theory.