Mechanical properties of normal and binormal double nanohelices

Lu Dai ${ }^{1, *}$, Xiaojiang Huang ${ }^{2}$, Lin Zhang ${ }^{3}$, Li Zhang ${ }^{3,4 *}$ and Lijuan Ge ${ }^{1}$
${ }^{1}$ School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China ${ }^{2}$ College of Science, Donghua University, Shanghai 201620, China
${ }^{3}$ Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
${ }^{4}$ Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China

[^0]
I. The mathematical expression of the double helix

According to the Cosserat curve model (see ref. 33), the mathematical expression of the double helix H_{DI} is

$$
\begin{align*}
\boldsymbol{x} & =\left[\left(\frac{\boldsymbol{F}^{\prime}}{\boldsymbol{E}_{1}} \sin \theta+\frac{\boldsymbol{f}}{\hat{\psi}} \frac{1}{\boldsymbol{E}_{1}} \cos \theta\right)(-\cos \theta)+\left(\frac{\boldsymbol{F}^{\prime}}{\boldsymbol{E}_{3}} \cos \theta-\frac{\boldsymbol{f}}{\hat{\psi}} \frac{1}{\boldsymbol{E}_{3}} \sin \theta+1\right) \sin \theta\right] \cos \psi \boldsymbol{e}_{1} \\
& +\left[\left(\frac{\boldsymbol{F}^{\prime}}{\boldsymbol{E}_{1}} \sin \theta+\frac{\boldsymbol{f}}{\hat{\psi}} \frac{1}{\boldsymbol{E}_{1}} \cos \theta\right)(-\cos \theta)+\left(\frac{\boldsymbol{F}^{\prime}}{\boldsymbol{E}_{3}} \cos \theta-\frac{\boldsymbol{f}}{\hat{\psi}} \frac{1}{\boldsymbol{E}_{3}} \sin \theta+1\right) \sin \theta\right] \sin \psi \boldsymbol{e}_{2}, \tag{S1}\\
& +\left[\left(\frac{\boldsymbol{F}^{\prime}}{\boldsymbol{E}_{1}} \sin \theta+\frac{\boldsymbol{f}}{\hat{\psi}} \frac{1}{\boldsymbol{E}_{1}} \cos \theta\right) \sin \theta+\left(\frac{\boldsymbol{F}^{\prime}}{\boldsymbol{E}_{3}} \cos \theta-\frac{\boldsymbol{f}}{\hat{\psi}} \frac{1}{\boldsymbol{E}_{3}} \sin \theta+1\right) \cos \theta\right] \boldsymbol{e}_{3}
\end{align*}
$$

where $\boldsymbol{e}_{\mathrm{i}}(\mathrm{i}=1,2,3)$ are the orthogonal basis of the fixed rectangular Cartesian system.

II. Interlocking helix angle

Figure S1. A section of a tightly packed normal double helix.

For the normal and binormal twisted double nanohelices with elliptic cross sections, $\zeta_{\max }$ is determined by the semiminor axis of r_{1} and semimajor axis of r_{2}. Fig. 2(a) shows a section of tightly packed normal double helix. The black line is the centre line of the rod and T is a contacting point on the helix axis. We have

$$
\begin{equation*}
\rho=\rho_{\mathrm{T}}+r_{2}, \tag{S2}
\end{equation*}
$$

where ρ is the curvature radius of the rod centre line, i.e. the curvature radius of the double helix, and ρ_{T} is the curvature radius along the tangent line direction of the blue rod centre line at the contacting point T. The schematics on the left panel in Fig. 2(b) displays a tightly packed normal double helix with the number of turns $1 / 4$. The black and red dash-dotted lines are along the tangent line direction of the yellow and blue rod centre line at the points of the corresponding contacting point T, respectively. The schematics on the right panel in Fig. 2(b) presents the elliptic cross section of the yellow rod with semi-axes r_{2}, r_{3} along the tangent line direction of the blue rod centre line, i.e. the red dash-dotted line.

As displayed in Figure S1, we mark the angle of ξ in Fig. 2(b) to explain the semiaxis r_{3} in detail. The relationship of

$$
\begin{equation*}
r_{3}=\frac{r_{1}}{\cos \xi} \tag{S3}
\end{equation*}
$$

can be obtained. Since $\xi=2 \zeta_{\text {max }}-\pi / 2$, we have

$$
\begin{equation*}
r_{3}=\frac{r_{1}}{\cos \left(2 \zeta_{\max }-\pi / 2\right)} . \tag{S4}
\end{equation*}
$$

When a normal double nanohelix is tightly packed, ρ_{T} is equal to the curvature radius of the yellow elliptic cross section of the rod at the contacting point T, shown in SupplementaryFigure1, which leads to

$$
\begin{equation*}
\rho_{\mathrm{T}}=\frac{r_{3}^{2}}{r_{2}} \tag{S5}
\end{equation*}
$$

Combining Eqs. (S2), (S4) and (S5) with the curvature radius of the double helix $\rho=\frac{4 \pi^{2} r_{2}^{2}+b_{0}^{2}}{4 \pi^{2} r_{2}}$, we can obtain

$$
\begin{equation*}
b_{0}=\frac{2 \pi r_{1}}{\cos \left(2 \zeta_{\max }-\pi / 2\right)} . \tag{S6}
\end{equation*}
$$

Substituting Eq. (S6) in the relationship of $\tan \zeta_{\max }=\frac{2 \pi r_{2}}{b_{0}}$, we have

$$
\begin{equation*}
\zeta_{\max }=\arccos \sqrt{\frac{r_{1}}{2 r_{2}}} \tag{S7}
\end{equation*}
$$

for a normal double helix. Similarly,

$$
\begin{equation*}
\zeta_{\max }=\arccos \sqrt{\frac{r_{2}}{2 r_{1}}} \tag{S8}
\end{equation*}
$$

for a binormal double helix can be derived.

[^0]: * To whom correspondence should be addressed. E-mail: dailu.1106@aliyun.com (L. Dai) \& lizhang@mae.cuhk.edu.hk (L. Zhang)

