Electronic Supplementary information

(ESI)

Localized Surface Plasmon Resonance Enhanced Quantum Dot Light-emitting Diodes via QuantumDot-capped Gold Nanoparticles

Jing Chen¹,Qianqian Huang¹, Qing Guo Du², Dewei Zhao^{3}, Feng Xu¹, Jiangyong Pan¹, Wei Lei1^{*}, and Arokia Nathan⁴*

¹School of Electronic Science and Engineering, Southeast University, Nanjing, China, 210096

²Institute of High Performance Computing, Singapore, 138632

³Department of Electrical Engineering and Computer Science, the University of Michigan, Ann Arbor, Michigan 48109, USA

⁴Electrical Engineering Division, Engineering Department, University of Cambridge,9 JJ Thomson

Avenue, CB3 0FA, Cambridge, UK

<u>*lw@seu.edu.cn</u>; dewei_zhao@hotmail.com

Figure S1.PL excitation (PLE) measurementswere carried out for the pristine QDs with emission peak and the QD capped AuNPs, respectively. The PLE intensity is increased for theQDs capped Au hybrids as the excitation energy decreases. The PLE is almost the same at the higher energy. It is obviously enhanced near the LSPR absorption peak of the Au NPs (2.38 eV) and QD emission peak (2.30 eV).

Figure S2. (a) Single (b) double, (c) triple and (d) quadruple QD-capped Au NPs. The magnitude of the enhancedelectric field intensity is indicated by color scale in a)-d).

To explore the electric field intensity enhancement caused by QD-capped Au NPs, we simulated the electric field intensity distribution using three-dimensional finite-differencetime-domain (FDTD) method. According to the TEM images, there are many possibilities regarding the number of QD-Au NPs that can be formed; accordingly, we performed the simulation byvarying numbers of QD-Au NPs (from 1 to 4). Figure S2 (a)-(d) present the electric field intensity distribution of single, double, triple, and quadruple QD-capped Au NPs, respectively. The bar is the electric field enhancement fold and the red color is observed to fill in the space of QD-Au and Au-Au. The electric field enhancement as high as 100 fold at the gap can be obtained between the Au NPs and the surface of Au. Moreover, the electric field enhancement for triple and quadruple Au NPs can be seen obviously.

Figure S3. a) AFM scans of NiO and QD-Au films andb) surface line profile and root-mean square (RMS) roughness values for NiO and QD-Au films are shown. The average roughness for NiO and QD-Au is 3.5 nm and 2.5 nm, respectively.

Table S1. Triexponential fit parameters.

These values were used to estimate the average lifetime of QD and QD-capped Au NP

emissiondecay using(1).

$$<\tau>=(\alpha_{1}\tau_{1}^{2}+\alpha_{2}\tau_{2}^{2}+\alpha_{3}\tau_{3}^{2})/(\alpha_{1}\tau_{1}+\alpha_{2}\tau_{2}+\alpha_{3}\tau_{3})$$
(1)

Film	α_1	$\tau_1(ns)$	α2	τ_2 (ns)	α3	τ_3 (ns)	<\(\tau>)
NiO film	488.6268	0.34448	488.6268	0.34448	1017.788	2.36284	2.11
QD on NiO film	730.4406	3.30863	730.4406	3.30863	475.768	0.41452	3.20
QD-Au on NiO film	683.8991	0.32495	428.0589	2.44736	810.8288	2.44798	2.30

Samples	Turn on	Maximum	Maximum power efficiency (lm/W)		
	voltage (V)	luminance(cd/m ²) (at the			
		voltage)			
SampleA-1	5.60	211 (11 V)	2.22 (5.6 V)		
Sample A-2	5.70	205 (11 V)	2.10 (5.6 V)		
Sample A-3	5.65	200 (11 V)	2.14 (5.6 V)		
Sample A-4	5.60	200 (11 V)	2.14 (5.6 V)		
Sample A-5	5.60	210 (11 V)	2.20 (5.6 V)		
Sample B-1	2.60	1005 (10 V)	6.20 (5 V)		
Sample B-2	2.65	940 (10 V)	6.12 (5 V)		
Sample B-3	2.60	990 (10 V)	6.15 (5 V)		
Sample B-4	2.62	1000 (10 V)	6.16 (5 V)		
Sample B-5	2.60	1000 (10 V)	6.20 (5 V)		

Table S2. The performance statistics of QD-LEDs under the same condition