Supporting information for the article:

Sulfonic Acid-Functionalized Magnetic Nanoparticles as a Recyclable and Eco-friendly Catalyst for Atom Economical Michael Addition Reaction and Bis Indolyl Methane Synthesis

Hajar Mahmoudi^a, Abbas Ali Jafari^{*a}, Soroosh Saeedi^a, and H. Firouzabadi^{*b}

a) Chemistry Department, Yazd University, Yazd, P.O.BOX 89195-741 (Iran) Fax: (+)98 351 8210644.

b) Late Professor Ali Akbar Moshfegh Laboratory, Chemistry Department, Shiraz University, Shiraz 71454, Iran

Contents:

- 1. Preparation of Fe₃O₄ nano particles, b
- 2. Preparation of Fe₃O₄@Fe₂O₃-SO₃H catalyst, b
- 3. Potentiometric titration curves Fe₃O₄@Fe₂O₃-SO₃H, c-d
- 4. FTIR of Fe₃O₄ and Fe₃O₄@ Fe₂O₃- SO₃H, d-e
- 5. The FT-IR, ¹H- and ¹³C-NMR spectrums of some products, e-f

1. Preparation of Fe₃O₄ nano particles:

FeCl₃·6H₂O (20 mmol) and FeCl₂·4H₂O (10 mmol) were added to deionized water (40 mL) under nitrogen atmosphere with ultrasound irradiation for 5 min at 60 °C. Then, ammonium hydroxide (15 mL, 28 wt%) was added rapidly to the resulting solution. The solution was immediately turned black. The reaction was kept at 60 °C for 20 min under ultrasound irradiation. The black precipitates were collected with an external magnet and washed with distilled water. The resulting Fe₃O₄ NPs were dried for 12h at room temperature under vacuum and characterized by XRD, FTIR.

XRD Spectra of Fe₃O₄

2. Preparation of Fe₃O₄@ Fe₂O₃- SO₃H catalyst:

A suction flask was equipped with a constant-pressure dropping funnel and a gas inlet for leading the generated HCl into water. To this flask, which contains Fe_3O_4 (1.00 g) in dichloromethane (20 mL), cholorosulfonic acid (1.0 mL) was added drop wise at room temperature for 15 min under ultrasound irradiation. The resulting mixture was sonicated until HCl gas evolution was stopped. The resulting MNHS material was separated by an external magnet and washed with dichloromethane (3×5 mL) and finally dried in an oven at 40°C. A brown solid $Fe_3O_4@\gamma Fe_2O_3$ -SO₃H was obtained that was characterized by XRD and Potentiometric titration.

XRD Spectra of Fe₃O₄@ Fe₂O₃- SO₃H

3. Potentiometric titration curves a) Fe₃O₄ and b) Fe₃O₄@ Fe₂O₃- SO₃H:

To evaluate the surface acidity of the Fe₃O₄@Fe₂O₃-SO₃H, we use the potentiometric titration method with n-butyl amine. As a criterion for interpreting the obtained results, the acid strength can be assigned according to the following scale: M.A.S. > 100 mV, very strong acid sites; 0 < M.A.S. < 100 mV, strong acid sites; -100 mV < M.A.S. < 0 mV, weak acid sites and M.A.S. < -100 mV, very weak acid sites. In figoure a) the remarkable difference in acid strength between pure Fe₃O₄ and Fe₃O₄@ Fe₂O₃-SO₃H can be observed from the millivolts range. Pure magnetic particle is a weakly acidic oxide (E = 2 mV) but it is modified by the -SO₃H addition, which generates very strong acidic sites (E = 650 mV) on the magnetic particle surface. These results indicate that Fe₃O₄@Fe₂O₃-SO₃H is a very strong solid acid with a high density of acid sites.

a) Potentiometric titration curves a) Fe₃O₄ and b) Fe₃O₄@Fe₂O₃-SO₃H under ultrasonic irradiation with 1.0 mL cholorosulfonic acid

In figoure b), the difference of acid strength between Fe₃O₄@Fe₂O₃-SO₃H with 2 mL cholorosulfonic acid and Fe₃O₄@Fe₂O₃-SO₃H with 1 mL cholorosulfonic acid can be observed from the millivolts range. It is found that, the persence of larger amount of cholorosulfonic acid increases the conversion of Fe₃O₄ to γ Fe₂O₃ and reduces amount of Fe²⁺ on the magnetic particle surface.

b) Potentiometric titration curves Fe₃O₄@Fe₂O₃-SO₃H under ultrasonic irradiation with 2.0 mL cholorosulfonic acid

4. FTIR of Fe₃O₄ and Fe₃O₄@ Fe₂O₃- SO₃H:

Figure c shows the FT-IR spectra of the magnetic nanoparticles with and without SO_3H loading. The three new bands appeared at 1200–1250, 1010–1100 and 650 cm⁻¹ are corresponding to the O=S=O asymmetric and symmetric stretching vibration and S-O stretching vibration of the sulfonic groups (-SO₃H).

c) FT-IR Spectra of Fe₃O₄ and SAMN.

5- The FT-IR, ¹H- and ¹³C-NMR spectrums of some products:

4-(1-H-3-indolyl)-2-butanone (entry 1, Table 3)

Pinkish solid, m.p: 91-93 °C; FT-IR: vmax (neat)= 3321, 1701, 1401cm⁻¹; \Box ¹HNMR (500 MHz, CDCl₃): δ = 8.37 (s, 1H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.22 (m, 3H), 6.94 (s, 1H), 3.10 (t, *J* = 7.1 Hz, 2H), 2.88 (t, *J* = 7.2 Hz, 2H), 2.18 (s, 3H) ppm; ¹³CNMR (125 MHz, CDCl₃): δ = 209.6, 136.4, 127.2, 122.0, 21.8, 119.2, 118.7, 114.7, 111.5, 44.1, 30.1, 19.5 ppm.

4-(2-methyl-1H-3-indolyl)-4-phenylbutan-2-one (entry 3, Table 3)

Oil, FT-IR: vmax (neat)= 3311, 1707, 1460, 1220 cm⁻¹; \Box ¹HNMR (500 MHz, CDCl₃): δ = 7.77 (s, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.21 (m, 8H), 4.74 (dd, J_I = 8.3 Hz, J_2 = 6.5 Hz, 1H), 3.20 (dd, J_I = 16.2 Hz, J_2 = 6.5 Hz, 1H), 2.21 (s, 3H), 1.93 (s, 3H) ppm; ¹³CNMR (125 MHz, CDCl₃): δ = 208.3, 144.2, 135.5, 131.9, 128.4, 127.6, 126.0, 120.8, 119.2, 113.0, 110.6, 48.4, 36.9, 30.8, 12.1 ppm.

3-((2,5-dimethoxyphenyl)(1H-indole-3-yl)methyl)-1H-indole (entry 2, Table 5)

pinkish solid, m.p: 161-162 °C; FT-IR: umax (neat)= 3422, 3350, 2949, 1494, 1454cm⁻¹; \Box ¹HNMR (500 MHz, CDCl₃): δ = 7.77 (s, 2H), 7.39 (d, *J* = 7.9 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 7.11 (t, *J* = 7.5 Hz, 2H), 6.96 (t, *J* = 7.4 Hz, 2H), 6.84 (d, *J* = 8.7 Hz, 1H), 6.73 (d, *J* = 3.1 Hz, 1H), 6.68 (dd, *J*₁ = 8.7 Hz, *J*₂ = 5.6 Hz, 1H), 6.56 (s, 2H), 6.29 (s, 1H), 3.74 (s, 3H), 3.60 (s, 3H) ppm; ¹³CNMR (125 MHz, CDCl₃): δ = 153.8, 151.7, 137.2, 134.7, 127.6, 124.1, 121.9, 120.2, 119.4, 119.2, 117.1, 112.2, 111.5, 111.0, 57.0, 55.8, 32.5 ppm.

4-(di(1H-indole-3-yl)methyl)benzene-1, 2-diol (entry 3, Table 5):

Yield: 94%, brown solid; m.p.: 145-146 °C; FT-IR: v_{max} (KBr)= 3412, 1610, 1519, 1218, 743 cm¹; ¹HNMR (500 MHz, CDCl₃): δ = 8.45 (s, 2H), 7.38 (d, *J* = 8.0Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.11 (t, *J* = 7.9 Hz, 2H), 6.95 (t, *J* = 7.7 Hz, 2H), 6.75-6.80 (m, 3H), 6.62 (s, 2H), 5.73 (s, 1H), 2.15 (s, 2H) ppm; ¹³CNMR (125 MHz, CDCl₃): δ = 144.4, 143.2, 137.1, 137.0, 127.5, 124.2, 121.8, 120.9, 120.2, 120.0, 119.1, 116.2, 115.5, 111.6, 40.1 ppm.