Supporting Information

Enhanced Photocatalytic Activity of α-Fe₂O₃/Bi₂WO₆ Heterostructured Nanofibers Prepared by Electrospinning Technique

Xiaona Liu, Qifang Lu*, Chaofeng Zhu, Suwen Liu

Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Material Science and Engineering, Qilu University of Technology, Jinan, 250353, P. R. China

^{*} Author to whom correspondence should be addressed. E-mail: <u>luqf0324@126.com</u> (Q. F. Lu).

Fig. S1 SEM image of the $\alpha\text{-}Fe_2O_3/Bi_2WO_6$ heterostructured nanofibers calcined at 600 °C for 1 h

From the above image, the α -Fe₂O₃/Bi₂WO₆ heterostructured nanofibers are fractured and the morphology is far from perfect when calcined at 600 °C for 1 h, which therefore demonstrate that the good morphology of α -Fe₂O₃/Bi₂WO₆ heterostructured nanofibers are obtained when calcined at 500 °C for 1 h.