Supplementary Information for:

Charge-transfer metal-organic frameworks based on CuCN architecture units: crystal structures, luminescence properties and theoretical investigations

Rong-Yi Huang,*^a Chen Xue,^a Chang-Hai Zhu,^a Zhu-Qing Wang,^a Heng Xu^a and Xiao-Ming Ren*^b

 ^a Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, P. R. China
 ^b Department of Applied Chemistry, Science College, Nanjing University of Technology, Nanjing, 210009, P. R. China

$$Cu^{2+} + [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3-} + Cu^+$$

nCu⁺ + nCN⁻ + mL → [(CuCN)_nL_m] (L =bix, bmimb, bimb)
(1, n = 4, m = 2; 2, 3, n=2, m = 1; 4, n=3, m = 1)

Scheme S1. A reasonable mechanism under the solvothermal condition

Fig. S1 View of the 3D framework of complex 1 along the *b*-axis, H-atoms have been omitted for clarity.

Fig. S2 View of the 3D framework of complex **2** along the [101] direction, H-atoms have been omitted for clarity.

Fig. S3 View of the 3D framework of complex **3** along the *a*-axis, H-atoms have been omitted for clarity.

Fig. S4 View of the 3D supramolecular framework of complex **4** along the [110] direction, H-atoms have been omitted for clarity.

Fig. S5 Thermogravimetry curves for 1-4

Fig. S6 Calculation models of 1-4.

LUMO

LUMO

номо

LUMO+1

4

1

Fig. S7 Frontier molecular orbitals of **1-4** for the ground state geometry in the gas phase.