Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Formation of Dications Bearing S(OH)₂⁺ Group from Long-lived 9,9-Dimethyl-10-R-phenanthrenium Cations in FSO₃H-SbF₅/SO₂CIF/SO₂: A Mechanistic Study

George E. Salnikov, Alexander M. Genaev*, Vladimir A. Bushmelev, Andrey A. Nefedov and Vyacheslav G. Shubin

Vorozhtsov Novosibirsk Institute of Organic Chemistry

Academician Lavrent'ev Ave., 9, Novosibirsk 630090, Russian Federation

e-mail: genaev@nioch.nsc.ru

Electronic Supplementary Information

Table of content

	page		page
¹ H NMR spectrum of dication 3a	S2	ROESY spectrum of cations 1b and 3b	S12-S14
13 C NMR spectrum of dication 3a	S 3	¹ H DNMR spectra of cations 1b and 3b	S15
COSY spectrum of dication 3a	S4	¹ H NMR spectrum of cation 1c	S16
ROESY spectrum of dication 3a	S5-S6	¹³ C NMR spectrum of cation 1c	S17
Generation and ¹ H NMR spectrum of dication $3a$ in SO ₂	S 7	¹ H NMR spectrum of dication 3c	S18
¹⁹ F NMR spectra of the reaction mixture	S 8	13 C NMR spectrum of dication 3 c	S19
¹ H NMR spectrum of deuterated cations 1a and 3a	S9	Attempts to generate dications 3d and 3e	S20
¹ H NMR spectrum of cations 1b and 3b	S10	¹ H NMR spectra of cation 1d	S21
¹³ C NMR spectrum of cations 1b and 3b	S11	¹ H NMR spectra of cations 1e	S22
-		Comparison of chemical shifts	S23

COSY spectrum (600 MHz) of dication **3a** in FSO₃H-SbF₅ /SO₂ClF/CD₂Cl₂/SO₂ at -81 °C

7-Dihydroxysulfonio-9,9-dimethyl-10-phenylethynylphenanthrenium dication (**3a**). Solution of carbinol **2a** (20 MF, 0.062 mmol.) in 0.13 g of CD₂Cl₂ was added to solution of FSO₃H (105 mg, 1.05 mmol.) and SbF₅ (235 mg, 1.09 mmol.) in 0.25 mL of liquid SO₂ placed into NMR tube at -70 °C and the mixture was stirred. Formation of cation **1a** was observed by NMR. The mixture was warmed to -61 °C and was kept for 2 h. ¹⁹F NMR spectra (see at the next page) show that the mixture contains the following particles: SO₃F⁻ (HSO₃F), SO₃F⁻ (SbF₅)₂, and SO₂ •SbF₅ at ratio 64:13:19:37 (a sum of SO₃F is taken as 100). ¹⁹F NMR spectrum (δ , ppm). SO₃F⁻ (HSO₃F): 43.1 s; SO₃F⁻ •SbF₅: 43.8 s (1F), -104.8 d (4F, *J* 99 Hz), -134.0 quintet (1F, *J* 99 Hz); SO₃F⁻ (SbF₅)₂: 42.6 s (1F), -106.2 d (4F, *J* 104 Hz), -131.1 quintet (1F, *J* 104 Hz); SO₂ •SbF₅: -101.8 d (4F, *J* 97 Hz), -134.9 quintet (1F, *J* 97 Hz).

¹H NMR spectrum (600 MHz) of cation **1a** in FSO₃H-SbF₅ /CD₂Cl₂/SO₂ at -61 °C:

ROESY spectrum (600 MHz; FSO₃H, H₃O⁺, S(OH)₂⁺ signals) of cations **1b** and **3b** in FSO₃H-SbF₅ /SO₂ClF/CD₂Cl₂/SO₂ at -61 °C. The exchange rate between protons of S(OH)₂⁺ group of dication **3b** and protons of FSO₃H is $k = 0.2 \text{ s}^{-1}$, pseudomonomolecular approximation.

An attempt to generate 7-dihydroxysulfonio-9,9-dimethyl-10-methylethynylphenanthrenium dication (3d).

Solution of carbinol $2d^{1}$ (5 MF, 0.019 mmol.) in 0.14 mL of CD₂Cl₂ was added to solution of FSO₃H (145 mg, 1.45 mmol.) and SbF₅ (310 mg, 1.43 mmol.) in 0.25 mL of SO₂ClF/SO₂ (8% SO₂) placed into NMR tube at -95 °C and the mixture was stirred. Formation of cation $1d^{OBC}$ was observed at -100 °C. This cation at -71°C for 40 min transforms into a complex mixture of unidentified products, no sulfination reaction being observed.

An attempt to generate 7-dihydroxysulfonio-9,9-dimethyl-10-trifluoromethylethynylphenanthrenium dication (3e).

Solution of carbinol $2e^1$ (20 MF, 0.063 mmol.) in 0.13 mL of CD₂Cl₂ was added to solution of FSO₃H (125 mg, 1.26 mmol.) and SbF₅ (290 mg, 1.33 mmol.) in 0.25 mL of SO₂ClF/SO₂ (8% SO₂) placed into NMR tube at -95 °C and the mixture was stirred. Formation of a mixture of cation 1e and its isomer 8 ^{OBC} was observed. The content of dication 3e in the mixture was less than 2% (if any) at -39 °C. At -39 °C these cations are quickly (for 10 min) decomposed.

[1] V.A. Bushmelev, A.M. Genaev, G.E. Sal'nikov, and V.G. Shubin, *Russ. J. Org. Chem.*, 2013, **49**, 853-859. [OBC] G.E. Salnikov, A.M. Genaev, V.A. Bushmelev and V.G. Shubin, *Org. Biomol. Chem.*, 2013, **11**, 1498-1501. ¹H NMR spectra (600 MHz) of cation **1d** in FSO₃H-SbF₅ /SO₂ClF/CD₂Cl₂/SO₂ at -100 °C (top) and after 40 min at -71 °C (bottom). The signal assignments are taken from *Org. Biomol. Chem.*, 2013, **11**, 1498-1501.

¹H NMR spectra (600 MHz) of the equilibrium mixture of cation **1e** (red) and its isomer (blue) in FSO₃H-SbF₅ /SO₂ClF/CD₂Cl₂/SO₂ at -39 °C (top) and at the same temperature after keeping the mixture for 10 min at -29 °C (bottom). The signal assignments are taken from *Org. Biomol. Chem.*, 2013, **11**, 1498-1501.

¹H NMR chemical shifts, $\delta(3)$ - $\delta(1)$ =difference

	H1	H2	H3	H4	H5	H6	H8	9-Me	10
(E) 3c -(E) 1c	8.86-8.73=0.13	8.04-7.85=0.19	8.57-8.44=0.13	8.71-8.61=0.10	8.83-8.49=0.34	8.24-7.72=0.52	8.34-7.85=0.49	2.00-1.92=0.08	12.22-11.31=0.91
(Z) 3c -(Z) 1c	8.47-8.28=0.19	8.10-7.92=0.18	8.57-8.47=0.10	8.75-8.67=0.08	8.80-8.49=0.31	8.24-7.72=0.52	8.36-7.88=0.48	2.00-1.96=0.04	12.82-11.92=0.90
3a-1a*	8.94-8.84=0.10	8.11-7.92=0.19	8.61-8.50=0.11	8.72-8.67=0.05	8.88-8.60=0.28	8.23-7.76=0.47	8.45-8.04=0.41	2.13-2.07=0.06	**
3b-1b	9.03-8.78=0.25	8.16-7.72=0.44	8.82-8.61=0.21	8.89-8.76=0.13	8.98-8.65=0.33	8.28-7.76=0.52	8.58-8.09=0.49	2.01-1.90=0.11	3.65-3.50=0.15

* **1a** in HSO₃F-SbF₅(1:1)-SO₂ClF at -91 °C; H7 7.90 ppm; ** Hm 7.82-7.76=0.06, Hp 8.04-7.92=0.12, Ho 8.22-8.15=0.07

¹³C NMR chemical shifts, $\delta(3)$ - $\delta(1)$ =difference

	C1	C2	2	C3	C4	C4a	C10a	C10
(<i>E</i>) 3c -(<i>E</i>) 1c	134.3-133.2=1.1	132.9-130.7=2	2.2 148.6-148	.3=0.3 126.8-	125.5=1.3 14	3.5-148.2=-4.7	122.4-121.4=1.0	216.1-215.5=0.6
3a-1a*	140.1-139.4=0.5	133.5-132.1=	1.4 150.5-150	.9=-0.4 126.9-	126.5=0.4 14	1.4-148.4=-7.0	135.5-136.4=-0.9	199.2-198.9=0.3
3b-1b**	140.2-137.6=2.6	133.8-131.4=	2.4 156.0-154	.0=2.0 127.7-	126.3=1.4 14	5.1-149.8=-4.7	133.8-133.4=0.4	239.9-233.4=6.5
	C4b	C8a	C5	C6	C7	C8	C9	9-Me
(<i>E</i>) 3c -(<i>E</i>) 1c	133.3-126.0=7.0	142.8-141.7=1.1	128.0-125.9=2.1	127.0-129.5=-2.5	134.9-133.3=1.6	126.3-127.3=-1.0	47.4-46.8=0.6	27.1-27.6=-0.5
3a-1a*	134.0-127.6=6.4	147.0-148.8=-1.8	128.7-127.7=1.0	126.2-130.1=-3.9	134.7-134.8=-0.	1 126.3-128.3=-2.0	52.2-52.7=-0.5	31.7-32.8=-1.1
3b-1b**	133.5-127.0=6.5	145.2-149.8=-4.6	129.4-127.4=2.0	126.3-129.4=-3.1	135.7-134.5=1.2	2 127.0-128.2=-1.2	54.6-53.5=1.1	27.8-27.7=0.1

* 1a in TfOH-CD₂Cl₂ at -7 °C; 105.5-101.7=3.8 (Ca), 119.8-120.7=-0.9 (Ci), 130.7-130.9=-0.2 (Cm), 138.1-137.4=0.7 (Co), 140.1-138.5=1.6 (Cp), 161.2-152.3=8.9 (Cb) ** 10-Me 26.7-25.2=1.5